El hueso, la obesidad y su interacción endocrina
PDF
HTML

Palabras clave

Obesidad
Densidad ósea
Insulina
Factor de crecimiento similar a la insulina
Vitamina D
Leptina
Adiponectina
Estradiol
Testosterona
obesity
bone density
insulin
Insulin-like growth factor
vitamin D
leptin
Adiponectin
testosterone

Cómo citar

Romero Ortiz, M. C., Roncancio Muñoz, J. S., Bernal, M. A., Martínez Jiménez, L. A., Rincón Lozano, J. D., Pulido Urbano, J. C., Jaramillo Castillo, D. C., Franco Vega, R., Maldonado Acosta, L. M., Arteaga Díaz, J. M., Caminos, J. E., & Rincón Ramírez, J. J. (2017). El hueso, la obesidad y su interacción endocrina. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 4(4), 38–45. https://doi.org/10.53853/encr.4.4.151

Resumen

La asociación entre la obesidad y la densidad mineral ósea ha sido un punto controversial al momento de establecer si existe una asociación positiva o negativa entre las mismas. Diversos estudios han propuesto que la obesidad es un factor protector del hueso, debido a la tensión mecánica dada por el peso corporal en la remodelación ósea. Otros estudios plantean que la relación es mucho más compleja debido a que el tejido adiposo y los osteoblastos provienen de líneas germinales comunes. Además, el adipocito tiene la capacidad de secretar diversas moléculas, entre ellas las adipocinas. Adicionalmente, el tejido adiposo es una de las principales fuentes de aromatasa, esto lo involucra en la conversión de andrógenos a estrógenos, que juegan un papel importante en el mantenimiento de la homeostasis ósea. Por lo tanto, se ha planteado el hueso como órgano blanco de diversas vías endocrinas y, a su vez, se considera un órgano endocrino que puede afectar otros órganos cuando está alterado. Por otra parte, se ha visto que la resistencia a la insulina en el contexto de la obesidad está asociada con inflamación crónica de bajo grado, deterioro funcional de órganos y alteración del metabolismo energético, que impacta la remodelación ósea.

 

Abstract

There is controversy over the effect of obesity in bone mineral density. Several studies have proposed that obesity is a protective factor of the bone by the mechanical tension that favors the bone remodeling. However, other studies suggest that this relationship is more complex because both tissues come from a common germ line; emphasizing that the adipocyte secretes diverse molecules, among them adipocinas. In addition, adipose tissue has aromatases that convert androgens into estrogens, having an importance in bone homeostasis. Therefore, the bone has been raised as a target organ of various endocrine pathways, which may affect other organs when it is altered. On the other hand, it has been shown that insulin resistance in the context of obesity is associated with chronic low-grade inflammation, functional impairment of organs and impaired energy metabolism, which impacts bone remodeling.

https://doi.org/10.53853/encr.4.4.151
PDF
HTML

Citas

1. WHO. WHO | Obesity and overweight. Who [Internet]. 2017 [cited 2017 Sep 3]; Available from: http://www.who.int/mediacentre/factsheets/fs311/en/
2. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health [Internet]. 2009 Dec 25 [cited 2017 Sep 3];9(1):88. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-9-88
3. Van Der Klaauw AA, Farooqi IS. The hunger genes: Pathways to obesity. Cell [Internet]. 2015 Mar 26 [cited 2017 Sep 1];161(1):119–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25815990
4. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet [Internet]. 2011 Aug 27 [cited 2017 Sep 1];378(9793):815–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21872750
5. Greco EA, Lenzi A, Migliaccio S. The obesity of bone. Ther Adv Endocrinol Metab [Internet]. 2015 Dec 19 [cited 2017 Sep 3];6(6):273–86. Available from: http://journals.sagepub.com/doi/10.1177/2042018815611004
6. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: Now and the future. Lancet. 2011;377(9773):1276–87.
7. Huber DM, Bendixen AC, Pathrose P, Srivastava S, Dienger KM, Shevde NK, et al. Androgens suppress osteoclast formation induced by RANKL and macrophage-colony stimulating factor. Endocrinology [Internet]. 2001 Sep [cited 2017 Jun 26];142(9):3800–8. Available from:
http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11517156%5Cn
http://endo.endojournals.org/cgi/content/full/142/9/3800
http://endo.endojournals.org/cgi/content/abstract/142/9/3800
8. Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Min Res [Internet]. 2006 Jul 17 [cited 2017 Sep 1];21(10):1648–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16995820
9. Vandewalle S, Taes Y, Van Helvoirt M, Debode P, Herregods N, Ernst C, et al. Bone size and bone strength are increased in obese male adolescents. J Clin Endocrinol Metab. 2013;98(7):3019–28.
10. Samuel VT, Shulman GI. Mechanisms for insulin resistance: Common threads and missing links. Cell [Internet]. 2012 Mar 2 [cited 2017 Sep 3];148(5):852–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22385956
11. Walsh JS. Normal bone physiology, remodelling and its hormonal regulation. Surg (United Kingdom) [Internet]. 2015 Jan 1 [cited 2017 Sep 3];33(1):1–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0263931914002257
12. Lecka-Czernik B, Stechschulte LA. Bone and fat: A relationship of different shades. Arch Biochem Biophys [Internet]. 2014 Nov [cited 2017 Sep 3];561:124–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0003986114002124
13. Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, et al. Bone- specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest [Internet]. 2014 Apr 1 [cited 2017 Sep 3];124(4):1–13. Available from: https://www.jci.org/articles/view/72323
14. Madeira E, Mafort TT, Madeira M, Guedes EP, Moreira RO, de Mendonça LMC, et al. Lean mass as a predictor of bone density and microarchitecture in adult obese individuals with metabolic syndrome. Bone [Internet]. 2014 Feb [cited 2017 Sep 3];59:89–92. Available from: http://linkinghub.elsevier.com/retrieve/pii/S8756328213004407
15. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, et al. Insulin Receptor Signaling in Osteoblasts Regulates Postnatal Bone Acquisition and Body Composition. Cell [Internet]. 2010 [cited 2017 Sep 3];142(2):309– 19. Available from: http://www.sciencedirect.com/science/article/pii/S0092867410006203
16. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism. Cell [Internet]. 2010 Jul 23 [cited 2017 Sep 3];142(2):296–308. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20655470
17. O’Regan AW, Nau GJ, Chupp GL, Berman JS. Osteopontin (Eta-1) in cell-mediated immunity: teaching an old dog new tricks. ImmunolToday [Internet]. 2000 Oct [cited 2017 Jun 26];21(10):475–8. Available from:
http://www.sciencedirect.com/science/article/pii/S0167569900017151
18. Naot D, Cornish J. Cytokines and hormones that contribute to the positive association between fat and bone. Front Endocrinol (Lausanne) [Internet]. 2014 [cited 2017 Sep 3];5(MAY):70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24847313
19. I.R. R. Fat and bone. Arch Biochem Biophys [Internet]. 2010 Nov 1 [cited 2017 Aug 30];503(1):20–7. Available from
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed9&NEWS=N&AN=2010507817
20. Sun AJ, Jing T, Heymsfield SB, Phillips GB. Relationship of leptin and sex hormones to bone mineral density in men. Acta Diabetol. 2003;40(SUPPL. 1).
21. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S. The relationship between metabolic syndrome and osteoporosis: A Review. Nutrients [Internet]. 2016 Jun 7 [cited 2017 Sep 1];8(6):347. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/27338453
22. Campos RMS, Lazaretti-Castro M, Mello MT De, Tock L, Silva PL, Corgosinho FC, et al. Influence of visceral and subcutaneous fat in bone mineral density of obese adolescents. Arq Bras Endocrinol Metabol [Internet]. 2012;56(1):12–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22460190
23. Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med [Internet]. 2016 Jan 6 [cited 2017 Sep 1];14(1):3. Available from: http://www.translational-medicine.com/content/14/1/3
24. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American college of cardiology/ American heart association task force on practice guidelines and the obesity society. J Am Coll Cardiol [Internet]. 2014 [cited 2017 Sep 1];63(25 PART B):2985–3023. Available from: https://doi.org/10.1161/01.cir.0000437739.71477.ee jacc.2013.11.004%5Cnpapers3://publication/doi/10.1016/j. jacc.2013.11.004
25. Garvey W, Garber A, Mechanick J, Bray G, Dagogo-Jack S, Einhorn D, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Position Statement on the 2014 Advanced Framework for a New Diagnosis of Obesity as a Chronic Disease. Endocr Pract [Internet].
2014 [cited 2017 Sep 1];20(9):977–89. Available from:
http://journals.aace.com/doi/abs/10.4158/EP14280.PS
26. Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J, et al. The Relationship between Obesity and Serum 1,25-Dihydroxy Vitamin D Concentrations in Healthy Adults. J Clin Endocrinol Metab [Internet]. 2004 Mar [cited 2017 Aug 30];89(3):1196–9. Available from: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2003-031398
27. Yao Y, Zhu L, He L, Duan Y, Liang W, Nie Z, et al. A meta-analysis of the relationship between vitamin D deficiency and obesity. Int J Clin Exp Med [Internet]. 2015 [cited 2017 Aug 30];8(9):14977–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26628980
28. Mallard SR, Howe AS, Houghton LA. Vitamin D status and weight loss: A systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials. Am J Clin Nutr [Internet]. 2016 Oct 1 [cited 2017 Aug 30];104(4):1151–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27604772
29. Vanlint S. Vitamin D and obesity. Nutrients [Internet]. 2013 Mar 20 [cited 2017 Aug 30];5(3):949–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23519290
30. Ding C, Gao D, Wilding J, Trayhurn P, Bing C. Vitamin D signalling in adipose tissue. Br J Nutr [Internet]. 2012 Dec 9 [cited 2017 Aug 30];108(11):1915– 23. Available from: http://www.journals.cambridge.org/abstract_S0007114512003285
31. Marcotorchino J, Tourniaire F, Landrier JF. Vitamin D, adipose tissue, and obesity. Horm Mol Biol Clin Investig [Internet]. 2013 Jan 1 [cited 2017 Aug 30];15(3):123–8. Available from: https://www.degruyter.com/view/j/hmbci.2013.15.issue-3/hmbci-2013-0027/hmbci-2013-0027.xml
32. Ceglia L, Nelson J, Ware J, Alysandratos K-D, Bray GA, Garganta C, et al. Association between body weight and composition and plasma 25-hydroxyvitamin D level in the Diabetes Prevention Program. Eur J Nutr [Internet]. 2015 Feb 2 [cited 2017 Aug 30];56(1):1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26525562
33. Gómez-Ambrosi J, Rodríguez A, Catalán V, Frühbeck G. The bone-adipose axis in obesity and weight loss. Obes Surg [Internet]. 2008 Sep 19 [cited 2017 Jun 26];18(9):1134–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18563500
34. Reid IR. Relationships between fat and bone. Osteoporos Int. 2008;19(5):595–606.
35. Motyl KJ, Rosen CJ. Understanding leptin-dependent regulation of skeletal homeostasis. Biochimie [Internet]. 2012 Oct [cited 2017 Jun 26];94(10):2089–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22534195
36. Lago F, Dieguez C, Gómez-Reino J, Gualillo O. Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol [Internet]. 2007 Dec 1 [cited 2017 Sep 1];3(12):716–24. Available from: http://www.nature.com/doifinder/10.1038/ncprheum0674
37. Diamantis E, Troupis T, Farmaki P, Diamanti S, Skandalakis P. Obesity and fracture risk. Arch Hell Med [Internet]. 2016 [cited 2017 Sep 1];33(3):320– 30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25002873
38. Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone [Internet]. 2004 Oct [cited 2017 Sep 1];35(4):842–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15454091
39. Williams GA, Wang Y, Callon KE, Watson M, Lin JM, Lam JBB, et al. In vitro and in vivo effects of adiponectin on bone. Endocrinology [Internet]. 2009 Aug 1 [cited 2017 Sep 1];150(8):3603–10. Available from: https://academic.oup.com/endo/article-lookup/doi/10.1210/en.2008-1639
40. Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun [Internet]. 2005 Jun 3 [cited 2017 Sep 1];331(2):520–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15850790
41. Dimitri P, Rosen C. The Central Nervous System and Bone Metabolism: An Evolving Story. Calcif Tissue Int [Internet]. 2017 May 8 [cited 2017 Sep 1];100(5):476–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27501818
42. Pascual Serrano D, Vera Pasamontes C, Girón Moreno R. Modelos animales de dolor neuropático. Vol. 31, Dolor. 2016. 70-76 p.
43. David G, Gardner D, Dolores R. Greenspan’s basic & clinical endocrinology. McGraw-Hill, New York. McGraw-Hill Medical; 2011.
44. Henning P, Ohlsson C, Engdahl C, Farman H, Windahl SH, Carlsten H, et al. The effect of estrogen on bone requires ERalpha in nonhematopoietic cells but is enhanced by ERalpha in hematopoietic cells. Am J Physiol Endocrinol Metab [Internet]. 2014 Oct 1 [cited 2017 Jun 26];307(7):E589-95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25117411
45. Bartell SM, Han L, Kim H, Kim SH, Katzenellenbogen J a, Katzenellenbogen BS, et al. Non-nuclear-initiated actions of the estrogen receptor protect cortical bone mass. Mol Endocrinol [Internet]. 2013 Apr [cited 2017 Jun 26];27(4):649–56. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3607700&tool=pmcentrez&rendertype=abstract
46. Lim VW, Li J, Gong Y, Yuan JM, Wu TS, Hammond GL, et al. Serum free estradiol and estrogen receptor-? mediated activity are related to decreased incident hip fractures in older women. Bone [Internet]. 2012 Jun [cited 2017 Jun 26];50(6):1311–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S8756328212007247
47. Ho-Pham LT, Nguyen ND, Nguyen T V. Quantification of the relative contribution of estrogen to bone mineral density in men and women. BMC Mus- culoskelet Disord [Internet]. 2013 Dec 23 [cited 2017 Jun 26];14(1):366. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3878025&tool=pmcentrez&rendertype=abstract
48. Finigan J, Gossiel F, Glüer CC, Felsenberg D, Reid DM, Roux C, et al. Endogenous estradiol and the risk of incident fracture in postmenopausal women: The OPUS study. Calcif Tissue Int [Internet]. 2012 Jul 27 [cited 2017 Jun 26];91(1):59–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22644322
49. Bekaert M, Van Nieuwenhove Y, Calders P, Cuvelier CA, Batens AH, Kaufman JM, et al. Determinants of testosterone levels in human male obesity. Endocrine [Internet]. 2015 Sep 13 [cited 2017 Jun 26];50(1):202–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25771885
50. Polari L, Yatkin E, Martínez Chacón MG, Ahotupa M, Smeds A, Strauss L, et al. Weight gain and inflammation regulate aromatase expression in male adipose tissue, as evidenced by reporter gene activity. Mol Cell Endocrinol [Internet]. 2015 Sep 5 [cited 2017 Jun 26];412:123–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26054748
51. Bredella MA, Lin E, Gerweck A V., Landa MG, Thomas BJ, Torriani M, et al. Determinants of bone microarchitecture and mechanical properties in obese men. J Clin Endocrinol Metab. 2012;97(11):4115–22.
52. Naderi S. Testosterone Replacement Therapy and the Cardiovascular System. Curr Atheroscler Rep [Internet]. 2016 Apr 1 [cited 2017 Jun 26];18(4):1–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26932226
53. Mooradian AD, Morley JE, Korenman SG. Biological actions of androgens. Endocr Rev [Internet]. 1987 Feb [cited 2017 Jun 26];8(1):1–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3549275
54. Shin J, Sung J, Lee K, Song YM. Genetic influence on the association between bone mineral density and testosterone in Korean men. Osteoporos Int [Internet]. 2016 Feb 2 [cited 2017 Jun 26];27(2):643–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26329099
55. Dabaja AA, Bryson CF, Schlegel PN, Paduch DA. The effect of hypogonadism and testosterone-enhancing therapy on alkaline phosphatase and bone mineral density. BJU Int [Internet]. 2015 Mar [cited 2017 Jun 26];115(3):480–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25046796
56. Sinnesael M, Claessens F, Laurent M, Dubois V, Boonen S, Deboel L, et al. Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: Evidence from targeted AR disruption in mouse osteocytes. J Bone Miner Res [Internet]. 2012 Dec [cited 2017 Jun 26];27(12):2535–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22836391
57. Kawano H, Sato T, Yamada T, Matsumoto T, Sekine K, Watanabe T, et al. Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci U S A [Internet]. 2003 Aug 5 [cited 2017 Jun 26];100(16):9416–21. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/12872002
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC170933
http://www.pnas.org/content/100/16/9416.abstract?ijkey=81dcb86a407a154bb96210c0372da519b870d64e&keytype2=tf_ipsecsha
58. Spoto B, Di Betta E, Mattace-Raso F, Sijbrands E, Vilardi A, Parlongo RM, et al. Pro- and anti-inflammatory cytokine gene expression in subcutaneous and visceral fat in severe obesity. Nutr Metab Cardiovasc Dis [Internet]. 2014 Oct [cited 2017 Jun 26];24(10):1137–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24984824
59. De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, et al. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos Int [Internet]. 2005 Nov 1 [cited 2017 Aug 30];16(11):1330–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15928804
60. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, et al. Obesity is not protective against fracture in postmenopausal women: Glow. Am J Med [Internet]. 2011 Nov [cited 2017 Aug 30];124(11):1043–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22017783
61. Prieto-Alhambra D, Premaor MO, Fina Avilés F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, et al. The association between fracture and obesity is site-dependent: A population-based study in postmenopausal women. J Bone Miner Res [Internet]. 2012 Feb [cited 2017 Aug 30];27(2):294–300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22095911
62. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol [Internet]. 2002 Nov [cited 2017 Sep 1];175(2):405–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12429038
63. Morley JE, Baumgartner RN. Cytokine-Related Aging Process. Journals Gerontol Ser A Biol Sci Med Sci [Internet]. 2004 Sep [cited 2017 Aug 30];59(9):M924–9. Available from: https://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/59.9.M924
64. Premaor MO, Comim FV, Compston JE. Obesity and fractures. Arq Bras Endocrinol Metabol [Internet]. 2014 Jul [cited 2017 Aug 30];58(5):470–7. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27302014000500470&lng=en&nrm=iso&tlng=en
65. Yang S, Shen X. Association and relative importance of multiple obesity measures with bone mineral density: the National Health and Nutrition Examination Survey 2005-2006. Arch Osteoporos [Internet]. 2015 Dec 9 [cited 2017 Aug 30];10(1):14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25957066
66. Knapp KM, Welsman JR, Hopkins SJ, Fogelman I, Blake GM. Obesity Increases Precision Errors in Dual-Energy X-Ray Absorptiometry Measurements. J Clin Densitom [Internet]. 2012 Jul [cited 2017 Aug 30];15(3):315–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22402120
http:// linkinghub.elsevier.com/retrieve/pii/S1094695012000054
67. Evans AL, Paggiosi MA, Eastell R, Walsh JS. Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. J Bone Miner Res [Internet]. 2015 May [cited 2017 Aug 30];30(5):920–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25400253
68. Sornay-Rendu E, Boutroy S, Vilayphiou N, Claustrat B, Chapurlat RD. In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: The OS des femmes de Lyon (OFELY) study. J Bone Miner Res [Internet]. 2013 Jul [cited 2017 Aug 30];28(7):1679–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23371055
69. Himes CL, Reynolds SL. Effect of obesity on falls, injury, and disability. J Am Geriatr Soc [Internet]. 2012 Jan [cited 2017 Aug 30];60(1):124–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22150343
70. Hamrick MW, Ferrari SL. Leptin and the sympathetic connection of fat to bone. Osteoporos Int [Internet]. 2008 Jul [cited 2017 Aug 30];19(7):905– 12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17924050
71. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone [Internet]. 2003 Oct [cited 2017 Aug 30];33(4):646–51. Available from: http://linkinghub.elsevier.com/retrieve/pii/S8756328203002370
72. Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B, et al.
Adiponectin regulates bone mass via opposite central and peripheral mechanisms through foxo1. Cell Metab [Internet]. 2013 Jun 4 [cited 2017 Aug 30];17(6):901–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23684624
73. Riis BJ, Rødbro P, Christiansen C. The role of serum concentrations of sex steroids and bone turnover in the development and occurrence of post-menopausal osteoporosis. Calcif Tissue Int [Internet]. 1986 Jun [cited 2017 Sep 1];38(6):318–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3089552
74. Walsh JS, Evans AL, Bowles S, Naylor KE, Jones KS, Schoenmakers I, et al. Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. Am J Clin Nutr [Internet]. 2016 Jun 1 [cited 2017 Aug 30];103(6):1465–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27169839.
Los autores deben declarar revisión, validación y aprobación para publicación del manuscrito, además de la cesión de los derechos de publicación, mediante un documento que debe ser enviado antes de la aparición del escrito.  Puede consultar una copia del documento aquí

Descargas

Los datos de descargas todavía no están disponibles.