Testicular histopathology of rats BIOU: Wistar exposed to malathion
PDF (Español (España))
HTML (Español (España))

Keywords

endocrine disruptors
histopathology
testis
malathion

How to Cite

Serrano, R., Hernández, G. A., Hung, S., Lozano, R., Paoli, M., & Gómez, R. (2019). Testicular histopathology of rats BIOU: Wistar exposed to malathion. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 6(4), 252–259. https://doi.org/10.53853/encr.6.4.544

Abstract

Objective: To determine the histopathology of the testes of BIOU: Wistar rats chronically exposed to malathion compared to non-exposed rats.
Methods: Experimental study with 20 male rats randomized, 10 to the control group and 10 to the exposed group. The exposure consisted in the chronic application of inhaled malathion once a week for 2 hours for 14 weeks, with equivalent doses to those used by humans in agriculture. The control group was exposed to a placebo (distilled water) in the open air for the same interval time. Afterwards, they were sacrificed, a serum sample was obtained for the determination of acetylcholinesterase and the testicles were extracted for histopathological study.
Results: Acetylcholinesterase levels were significantly lower (p = 0.0001) in the exposed group than in the control group. In the histopathological study with light microscopy, in the exposed group, vacuolation of the germinal epithelium was observed in 50 % of the cases (p = 0.016) for an odds ratio of 3.00 (95 %:1.46- 6.13), as well as incomplete spermatogenesis in 40 % (p = 0.043) for an odds ratio of 2.66 (95 %:1.41-5.02), while there were no alterations in the control group. There was a significant inverse correlation (p = 0, 0001) between the number of histopathological alterations and acetylcholinesterase activity.
Conclusions: These results show that chronic exposure to malathion in BIOU: Wistar rats can produce deleterious effects on their reproductive system.

https://doi.org/10.53853/encr.6.4.544
PDF (Español (España))
HTML (Español (España))

References

1. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293-342.
2. Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ Toxicol Pharmacol. 2017;51:56-70.
3. Safe S. Endocrine disruptors and falling sperm counts: lessons learned or not! Asian J Androl. 2013;15(2):191-4.
4. Slutsky M, Levin JL, Levy BS. Azoospermia and oligospermia among a large cohort of DBCP applicators in 12 countries. Int J Occup Environ Health. 1999;5(2):116-22.
5. Perry MJ, Venners SA, Chen X, Liu X, Tang G, Xing H, et al. Organophosphorous pesticide exposures and sperm quality. Reprod Toxicol Elmsford N. 2011;31(1):75-9.
6. Jouannet P, Wang C, Eustache F, Kold-Jensen T, Auger J. Semen quality and male reproductive health: the controversy about human sperm concentration decline. APMIS Acta Pathol Microbiol Immunol Scand. 2001;109(5):333-44.
7. Jab?o?ska-Trypu? A, Wo?ejko E, Wydro U, Butarewicz A. The impact of pesticides on oxidative stress level in human organism and their activity as an endocrine disruptor. J Environ Sci Health B. 2017;52(7):483-94.
8. Suresh NB, Malik JK, Rao GS, Aggarwal M, Ranganathan V. Effects of subchronic malathion exposure on the pharmacokinetic disposition of pefloxacin. Environ Toxicol Pharmacol. septiembre de 2006;22(2):167-71.
9. Rezg R, Mornagui B, El-Fazaa S, Gharbi N. Biochemical evaluation of hepatic damage in subchronic exposure to malathion in rats: effect on superoxide dismutase and catalase activities using native PAGE. C R Biol. 2008;331(9):655-62.
10. Rezg R, Mornagui B, El-Fazaa S, Gharbi N. Caffeic acid attenuates malathion induced metabolic disruption in rat liver, involvement of acetylcholinesterase activity. Toxicology. 2008;250(1):27-31.
11. Contreras HR, Bustos-Obregón E. Morphological alterations in mouse testis by a single dose of malathion. J Exp Zool. 1999;284(3):355-9.
12. Penna-Videau S, Bustos-Obregón E, Cermeño-Vivas JR, Chirino D. Malathion Affects Spermatogenic Proliferation in Mouse. Int J Morphol. 2012;30(4):1399-407.
13. Truhaut R, Vernin H. [micromethod of determination of true cholinesterase activity in whole blood]. Ann Biol Clin (Paris). 1964;22:419-28.
14. Duty SM, Silva MJ, Barr DB, Brock JW, Ryan L, Chen Z, et al. Phthalate exposure and human semen parameters. Epidemiol Camb Mass. 2003;14(3):269-77.
15. Mocarelli P, Gerthoux PM, Patterson DG, Milani S, Limonta G, Bertona M, et al. Dioxin Exposure, from Infancy through Puberty, Produces Endocrine Disruption and Affects Human Semen Quality. Environ Health Perspect. 2008;116(1):70-7.
16. Abell A, Ernst E, Bonde JP. Semen quality and sexual hormones in greenhouse workers. Scand J Work Environ Health. 2000;26(6):492-500.
17. Juhler RK, Larsen SB, Meyer O, Jensen ND, Spanò M, Giwercman A, et al. Human semen quality in relation to dietary pesticide exposure and organic diet. Arch Environ Contam Toxicol. 1999;37(3):415-23.
18. Oliva A, Spira A, Multigner L. Contribution of environmental factors to the risk of male infertility. Hum Reprod Oxf Engl. 2001;16(8):1768-76.
19. Larsen SB, Giwercman A, Spanò M, Bonde JP. A longitudinal study of semen quality in pesticide spraying Danish farmers. The ASCLEPIOS Study Group. Reprod Toxicol Elmsford N. 1998;12(6):581-9.
20. Padungtod C, Savitz DA, Overstreet JW, Christiani DC, Ryan LM, Xu X. Occupational pesticide exposure and semen quality among Chinese workers. J Occup Environ Med. 2000;42(10):982-92.
21. Lifeng T, Shoulin W, Junmin J, Xuezhao S, Yannan L, Qianli W, et al. Effects of fenvalerate exposure on semen quality among occupational workers. Contraception. 2006;73(1):92-6.
22. Hernández AF, Parrón T, Tsatsakis AM, Requena M, Alarcón R, LópezGuarnido O. Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology. 2013;307:136-45.
23. Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3- 5):204-15.
24. Sharpe RM. Environmental/lifestyle effects on spermatogenesis. Philos Trans R Soc B Biol Sci. 2010;365(1546):1697-712.
25. Geng X, Shao H, Zhang Z, Ng JC, Peng C. Malathion-induced testicular toxicity is associated with spermatogenic apoptosis and alterations in testicular enzymes and hormone levels in male Wistar rats. Environ Toxicol Pharmacol. 2015;39(2):659-67.
26. Slimen S, Saloua EF, Najoua G. Oxidative stress and cytotoxic potential of anticholinesterase insecticide, malathion in reproductive toxicology of male adolescent mice after acute exposure. Iran J Basic Med Sci. 2014;17(7):522-30.
27. Uzun FG, Kalender S, Durak D, Demir F, Kalender Y. Malathion-induced testicular toxicity in male rats and the protective effect of vitamins C and E. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2009;47(8):1903-8.
28. Krause W. Influence of DDT, DDVP and malathion on FSH, LH and testosterone serum levels and testosterone concentration in testis. Bull Environ Contam Toxicol. 1977;18(2):231-42.
29. Choudhary N, Goyal R, Joshi SC. Effect of malathion on reproductive system of male rats. J Environ Biol. 2008;29(2):259-62.
30. Bustos-Obregón E, González-Hormazabal P. Effect of a single dose of malathion on spermatogenesis in mice. Asian J Androl. 2003;5(2):105-7.
31. Navarro OE, Bustos HR, Molina HK, Arriaza C. Efecto del insecticida malathion sobre el epitelio germinativo de testículo de ratón cf1. Interciencia Rev Cienc Tecnol América. 2015;40(8):560-3.
32. Fernández A. DG, Mancipe G. LC, Fernández A. DC. intoxicación por organofosforados. Rev Med. junio de 2010;18(1):84-92.
33. Uzunhisarcikli M, Kalender Y, Dirican E, Kalender S, Ogutcu A, Buyukkomurcu F. Acute, subacute and subchronic administration of methyl parathion-induced testicular damage in male rats and protective role of vitamins C and E. Pestic Biochem Physiol. 2007;87:115-22.
34. Koji T, Hishikawa Y. Germ cell apoptosis and its molecular trigger in mouse testes. Arch Histol Cytol. 2003;66(1):1-16.
35. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9(1):47-59.
36. Korsmeyer SJ. BCL-2 gene family and the regulation of programmed cell death. Cancer Res. 1999;59(7 Suppl):1693s-700s.
37. Basu A, Haldar S. The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod. 1998;4(12):1099-109.

Authors must state that they reviewed, validated and approved the manuscript's publication.  Moreover, they must sign a model release that should be sent.  A copy may be reviewed here

Dimensions


PlumX


Downloads

Download data is not yet available.