Estimación del riesgo cardiovascular por composición corporal total

  • Oscar Medina Fundación Clínica Shaio, Bogotá
  • Juan Manuel Sarmiento Fundación Clínica Shaio, Bogotá
  • Larry Quinn Universidad del Bosque, Bogotá
  • Sonia Merlano Fundación Clínica Shaio, Bogotá
  • Fabian Antonio Dávila Fundación Clínica Shaio, Bogotá
  • Andrés Felipe Barragán Universidad de la Sabana, Bogotá
  • Antonio José Lewis Universidad de la Sabana, Bogotá
  • Iván René Mogollón Universidad de la Sabana, Bogotá
  • María Jose Pareja Universidad de la Sabana, Bogotá

Resumen

Introducción: La obesidad y la adiposidad están relacionadas con el aumento del riesgo cardiovascular. El índice de masa corporal (IMC) y el perímetro abdominal son las variables antropométricas más utilizadas para evaluar su magnitud. El presente estudio busca establecer la relación entre desenlaces cardiometabólicos y la adiposidad medida con Absorciometría Dual por rayos X (DXA), así como el rendimiento diagnóstico de la misma contra la medición de las variables antropométricas convencionales.
Materiales y métodos: Se realizó un estudio observacional de corte transversal; se calcularon las variables antropométricas y de composición corporal para 60 pacientes en programa de rehabilitación cardiaca fase II.
Resultados: Existió mayor prevalencia de obesidad por IMC y adiposidad en mujeres que en hombres (p=0,01 y 0,048). La curva ROC encontró que el rendimiento del perímetro abdominal es solo 65% y el del IMC del 65,6% para el diagnóstico de adiposidad. Se encontraron relaciones significativas entre porcentaje de masa grasa elevado y la enfermedad coronaria (OR: 1,9 p= 0,042); el IMC aumentado con la hipertensión arterial (OR: 3,0 p= 0,0334) y el LDL > 70 mg/dl (OR: 0,4 p= 0,0178); el perímetro abdominal aumentado con la falla cardiaca (OR: 0,58 p=0,0382); la TMB baja con la hipertensión arterial (OR: 1,70 p= 0,046) y finalmente el IIRME disminuido con el LDL > 70 mg/dl y la falla cardiaca (OR: 0,4 p= 0,0178 y OR 1,96 p=0,078, respectivamente).
Conclusiones: La suma de la medición de las variables antropométricas y de composición corporal por DXA ofrece información valiosa para el estudio y estimación del riesgo cardiovascular y metabólico de los pacientes.


Abstract
Introduction: Obesity and adiposity are associated with increased cardiovascular risk. The body mass index (BMI) and waist circumference are the most anthropometric variables used to assess their magnitude. This study aims to establish the relationship between adiposity and cardiometabolic outcomes measured by Dual X-ray Absorptiometry (DXA) as well as the diagnostic performance of the latter against the measurement of the conventional anthropometric variables.
Materials and methods: An observational cross-sectional study was conducted; anthropometric and body composition variables for 60 patients in cardiac rehabilitation program phase II were calculated.
Results: There was a higher prevalence of obesity by BMI and adiposity in women than in men (p = 0.01 and 0.048). The ROC curve found that the performance is only 65% for waist circumference and 65.6% for BMI for the diagnosis of adiposity. Significant correlations between high percentage of fat mass and coronary heart disease (OR: 1.9 p = 0.042) were found; as well as for increased BMI with hypertension (OR: 3.0 p = 0.0334) and LDL> 70mg/dl (OR: 0.4 p = 0.0178); increased waist circumference with heart failure (OR: 0.58 p = 0.0382); low basal metabolic rate (BMR) with hypertension (OR: 1.70 p = 0.046) and finally the decreased fat free mass index (FFMI) with LDL>70mg/dl and heart failure (OR: 0.4 p = 0.0178 and OR: 1.96 p = 0.078 respectively).
Conclusions: The addition of body composition variables by DXA and anthropometric variables, provides valuable information for the study and estimation of cardiovascular and metabolic risk.
Key Words: Obesity; DEXA Scans; Coronary Disease; BodyComposition; Body Mass Index; Adiposity.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Biografía del autor

##submission.authorWithAffiliation##

Médico Internista, Endocrinólogo, Fundación Clínica Shaio, Bogotá, Colombia.

##submission.authorWithAffiliation##

Médico del deporte, Fundación Clínica Shaio, Bogotá, Colombia. 

##submission.authorWithAffiliation##

Residente de medicina del deporte, Universidad del Bosque, Bogotá, Colombia. 

##submission.authorWithAffiliation##

Médica Nuclear, Fundación Clínica Shaio, Bogotá, Colombia

##submission.authorWithAffiliation##

Bioestadístico, Fundación Clínica Shaio, Bogotá, Colombia.

##submission.authorWithAffiliation##

Médico general, Universidad de la Sabana, Bogotá, Colombia

##submission.authorWithAffiliation##

Médico general, Universidad de la Sabana, Bogotá, Colombia. 

##submission.authorWithAffiliation##

Médico general, Universidad de la Sabana, Bogotá, Colombia. 

##submission.authorWithAffiliation##

Médico general, Universidad de la Sabana, Bogotá, Colombia. 

Citas

1. Centers for Disease Control and Prevention. Obesity and overweight. 2006;(December 31, 2009). http://www.cdc.gov/nchs/fastats/overwt. htm.
2. Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL. Indices of relative weight and obesity. J Chronic Dis. 1972;25(6-7):329-343. doi:10.1016/0021- 9681(72)90027-6.
3. Pasco JA, Holloway KL, Dobbins AG, Kotowicz MA, Williams LJ, Brennan SL. Body mass index and measures of body fat for defining obesity and under- weight: a cross-sectional, population-based study. BMC Obes. 2014;1(1):9. doi:10.1186/2052-9538-1-9.
4. Cornier M, Despres J, Davis N, et al. Assessing Adiposity: A Scientific Statement From the American Heart Association. Circulation. 2011;124(18):1996-2019. papers://d66c75de-80d3-4649-8e61-daee- b2a77aa9/Paper/p6293.
5. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412-423. doi:10.1093/ ageing/afq034.
6. IAEA Human Health Series No. 15. Dual Energy X Ray Absorptiometry for Bone Mineral Density and Body Composition Assessment.; 2010. http://www-pub.iaea.org/books/iaeabooks/8459/Dual-Energy-X-Ray-Absorptiometry-for-Bone-Mineral-Density-and-Body-Composition-Assessment.
7. Albanese C V, Diessel E, Genant HK. Clinical applications of body composition measurements using DXA. J Clin Densitom. 2003;6(2):75-85. doi:JCD:6:2:75 [pii].
8. National Health and Nutrition Examination Survey (NHANES). Body Composition Procedures Manual. 2012:1-125.
9. Morrison DS, Boyle S, Morrison C, Allardice G, Greenlaw N, Forde L. Evaluation of the first phase of a specialist weight management programme in the UK National Health Service: prospective cohort study. Public Heal Nutr. 2012;15(1):28-38. doi:10.1017/S1368980011001625.
10. Weijs PJM, Vansant GAAM. Validity of predictive equations for resting energy expenditure in Belgian normal weight to morbid obese women. Clin Nutr. 2010;29(3):347-351. doi:10.1016/j.clnu.2009.09.009.
11. Buendía R, Zambrano M, Díaz Á, Reino A, Ramírez J, Espinosa E. Puntos de corte de perímetro de cintura para el diagnóstico de obesidad abdominal en población colombiana usando bioimpedanciometría como estándar de referencia. Rev Colomb Cardiol. 2015. doi:10.1016/j.rc- car.2015.07.011.
12. Shea J, King M, Yi Y, Gulliver W, Sun G. Body fat Percentage is Associated with Cardiometabolic Dysregulation in BMI- Defined Normal Weight Subjects. Nutr Metab Cardiovasc Dis. 2011:1-7.
13. Sun Q, Townsend MK, Okereke OI, Franco OH, Hu FB, Grodstein F. Adiposity and weight change in mid-life in relation to healthy survival after age 70 in women: prospective cohort study. BMJ. 2009;339(sep29_1):b3796. doi:10.1136/bmj.b3796.
14. De Lorenzo A, Del Gobbo V, Premrov MG, Bigioni M, Galvano F, Di Renzo L. Normal-weight obese syndrome: Early inflammation? Am J Clin Nutr. 2007;85(1):40-45. doi:85/1/40 [pii].
15. Pasco JA, Nicholson GC, Brennan SL, Kotowicz MA. Prevalence of Obesity and the Relationship between the Body Mass Index and Body Fat: Cross- Sectional, Population-Based Data. PLoS One. 2012;7(1):e29580 - .
16. Perissinotto E, Pisent C, Sergi G, Grigoletto F. Anthropometric measurements in the elderly: age and gender differences. Br J Nutr. 2002;87(2):177- 186. doi:10.1079/BJN2001487.
17. Vasconcelos FDAG, Cordeiro BA, Rech CR, Petroski EL. Sensibilidade e especificidade do índice de massa corporal no diagnóstico de sobrepeso / obesidade em idosos. Cad Saúde Pública. 2010;26(8):1519-1527.
18. Santos J., Albala C, Lera L, et al. Anthropometric measurements in the elderly population of Santiago, Chile. Nutrition. 2004;20(5):452-457. doi:10.1016/j.nut.2004.01.010.
19. Santosa S, Jensen MD. Adipocyte fatty acid storage factors enhance subcutaneous fat storage in postmenopausal women. Diabetes. 2013;62(3):775- 782. doi:10.2337/db12-0912.
20. Shen W, Punyanitya M, Silva AM, et al. Sexual dimorphism of adipose tissue distribution across the lifespan: a cross-sectional whole-body magnetic resonance imaging study. Nutr Metab (Lond). 2009;6:9. doi:10.1186/1743- 7075-6-17.
21. Geer EB, Shen W. Gender differences in insulin resistance, body composition, and energy balance. Gend Med. 2009;6(Suppl 1):60-75. doi:10.1016/j. genm.2009.02.002.Gender.
22. Silver HJ, Welch EB, Avison MJ, Niswender KD. Imaging body composition in obesity and weight loss: challenges and opportunities. Diabetes Metab Syndr Obes. 2010;3:337-347. doi:10.2147/DMSOTT.S9454.
23. Lang PO, Trivalle C, Vogel T, Proust J, Papazian JP. Markers of metabolic and cardiovascular health in adults: Comparative analysis of DEXA-based body composition components and BMI categories. J Cardiol. 2014;65(1):42-49. doi:10.1016/j.jjcc.2014.03.010.
24. Lang PO, Mahmoudi R, Novella JL, et al. Is obesity a marker of robustness in vulnerable hospitalized aged populations? Prospective, multicenter cohort study of 1 306 acutely ill patients. J Nutr Heal Aging. 2014;18(1):66-74. doi:10.1007/s12603-013-0352-9.
25. Bradshaw PT, Monda KL, Stevens J. Metabolic syndrome in healthy obese, overweight, and normal weight individuals: the Atherosclerosis Risk in Communities Study. Obesity (Silver Spring). 2013;21(1):203-209. doi:10.1002/oby.20248.
26. Stamler J, Rose G, Stamler R, Elliott P. INTERSALT study findings. Public health and medical care implications. Circulation. 1989. http://hyper.ahajournals.org/content/14/5/570.short.
27. Vaziri Y, Bulduk S, Shadman Z, et al. Lean Body Mass as a Predictive Value of Hypertension in Young Adults, in Ankara, Turkey. Iran J Public Health. 2015;44(12):1643-1654. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=prem&NEWS=N&AN=26811815.
28. Jornayvaz FR, Samuel VT, Shulman GI, Jornayvaz R. The Role of Muscle Insulin Resistance in the Pathogenesis of Atherogenic Dyslipidemia and Nonalcoholic Fatty Liver Disease Associated with the Metabolic Syndrome. Annu Rev Nutr. 2010;30(1):273-290. doi:10.1146/annurev.nutr.012809.104726.
29. Liu P, Ma F, Lou H, Liu Y. The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC Public Health. 2013;13(1):629. doi:10.1186/1471-2458-13-629.
30. Narumi T, Watanabe T, Kadowaki S, et al. Sarcopenia evaluated by fat- free mass index is an important prognostic factor in patients with chronic heart failure. Eur J Intern Med. 2015;26(2):118-122. doi:10.1016/j. ejim.2015.01.008.
Publicado
2017-05-05
##submission.howToCite##
MEDINA, Oscar et al. Estimación del riesgo cardiovascular por composición corporal total. Revista Colombiana de Endocrinología, Diabetes & Metabolismo, [S.l.], v. 4, n. 1, p. 22-27, mayo 2017. ISSN 2389-9786. Disponible en: <https://revistaendocrino.org/index.php/rcedm/article/view/104>. Fecha de acceso: 13 mayo 2021
Sección
Articulos Originales