Abstract
Introduction: Obesity is a disease of high interest in public health of multifactorial etiology. It is necessary to know the own environmental aspects of each region that contribute to the development to this disease. The aim was to evaluate the association between diverse demographic and psychosocial factors in childhood and adulthood with having weight excess in the present in a Colombian population.
Materials and methods: We conducted a descriptive cross-sectional study. An electronic poll that evaluated demographic variables, childhood conditions and actual habits was applied to subjects older than 18 years who were attending to FOSCAL Hospital as patients or companions. We excluded people with cognitive deficiency, involuntary weight loss of 10 % or more and pregnant women.
Results: 490 participants were included in the analysis with a mean age of 31.4±15 years; 58.8 % were women and 91.4 % came from urban area. 44.8 % of the participants had weight excess (32.6 % had overweight and 12.2 % had obesity). We found association between actual age (OR: 1.11; CI 95 %: 1.04-1.19; p=0.0.002), weight achieved at the age of 18 (OR: 1.10; CI 95 %: 1.06-1.15; p<0.001) and have lived in a residential unit during childhood (OR: 0.40; CI 95 %: 0.18-0.88; p<0.001) with having weight excess in the present. A weight gain of 0.35 kg per year of life was documented. Other findings such as alcohol and psychoactive substances as well as weekly performed physical activity, were not associated.
Conclusions: Actual age, weight achieved at the age of 18 and have not lived in a residential unit were the associated factors to have weight excess in an adult Colombian population.
References
2. Ministerio de Salud y Protección Social, Instituto Nacional de Salud, Instituto de Prosperidad Social, Instituto Colombiano de Bienestar Familiar, Universidad Nacional de Colombia. Encuesta Nacional de Situación Nutricional de Colombia (ENSIN). 2015:448-463. Disponible en:
https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/libro-ensin-2015.pdf
3. Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, et al. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr Rev. 2017;38(4):267-96. doi: 10.1210/er.2017-00111
4. Kushner RF. Clinical assessment and management of adult obesity. Circulation. 2012;126(24):2870-7. doi: 10.1161/CIRCULATIONAHA.111.075424
5. Preventing and Managing the Global Epidemic. Génova, Suiza: World Health Organization Obesity; 1998. Disponible en: https://bit.ly/2Wi2z4a
6. Swinburn BA, Caterson I, Seidell JC, James WP. Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr. 2004;7(1A):123-46. doi: 10.1079/phn2003585
7. Álvarez-Castaño LS, Goez-Rueda JD, Carreño-Aguirre C. Factores sociales y económicos asociados a la obesidad: los efectos de la inequidad y de la pobreza. Revista Gerencia y Políticas de Salud. 2012;11(23):98-110. Disponible en: https://bit.ly/37pgvzv
8. Herrera BM, Lindgren CM. The genetics of obesity. Curr Diab Rep. 2010;10(6):498-505. doi: 10.1007/s11892-010-0153-z
9. Truett J, Cornfield J, Kannel W. A multivariate analysis of the risk of coronary heart disease in Framingham. J Chronic Dis. 1967;20(7):511-24. doi: 10.1016/0021-9681(67)90082-3
10. Ganz ML, Wintfeld N, Qian L, Alas V, Langer J, Hammer M. The association of body mass index with the risk of type 2 diabetes: a case control study nested in an electronic health records system in the United States. Diabetol Metab Syndr. 2014;6(1):50. doi: 10.1186/1758-5996-6-50
11. Pico SM, Bergonzoli G, Contreras A. Risk factors associated with the metabolic syndrome in Cali, Colombia (2013): A case-control study. Biomedica. 2019;39(1):46-54. doi: 10.7705/biomedica.v39i1.3935
12. Begum GS, Shariff A, Ayman G, Mohammad B, Housam R, Khaled N. Assessment of risk factors for development of polycystic ovarian syndrome. Int J Contemp Res. 2017;4(1):77-83. Disponible en: https://bit.ly/3nu0nCG
13. Lu F, Hu E, Xu L, Chen L, Wu J, Li H, et al. The relationship between obesity and the severity of non-alcoholic fatty liver disease: systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol. 2018;12(5):491-502. doi: 10.1080/17474124.2018.1460202
14. Hein M, Lanquart JP, Loas G, Hubain P, Linkowski P. Prevalence and risk factors of moderate to severe obstructive sleep apnea syndrome in insomnia sufferers: a study on 1311 subjects. Respir Res. 2017;18(1):135. doi: 10.1186/s12931-017-0616-8
15. Zheng H, Chen C. Body mass index and risk of knee osteoarthritis: systematic review and metanalysis of prospective studies. BMJ Open. 2015;5(12):e007568. doi: 10.1136/bmjopen-2014-007568
16. Aune D, Navarro-Rosenblatt DA, Chan DS, Vingeliene S, Abar L, Vieira AR, et al. Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Ann Oncol. 2015;26(8):1635-48. doi: 10.1093/annonc/mdv142
17. Bardou M, Barkun AN, Martel M. Obesity and colorectal cancer. GUT. 2013;62(6):933-47. doi: 10.1136/gutjnl-2013-304701
18. Rohde K, Keller M, la Cour Poulsen L, Blüher M, Kovacs P, Böttcher Y. Genetics and epigenetics in obesity. Metabolism. 2019;92:37-50. doi: 10.1016/j. metabol.2018.10.007
19. González-Muniesa P, Mártinez-González MA, Hu FB, Després JP, Matsuzawa Y, Loos RJF, et al. Obesity. Nat Rev Dis Primers. 2017;3:17034. doi: 10.1038/nrdp.2017.34
20. Pérez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Gálvez BG. ‘Adipaging’: ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol. 2016;594(12):3187-207. doi: 10.1113/JP271691
21. Solomon TP, Marchetti CM, Krishnan RK, Gonzalez F, Kirwan JP. Effects of aging on basal fat oxidation in obese humans. Metabolism. 2008;57(8):1141-7. doi: 10.1016/j.metabol.2008.03.021
22. Davis S, Castelo-Branco C, Chedraui P, Lumsden M, Nappi R, Shah D, et al. Understanding weight gain at menopause. Climacteric. 2012;15(5):419- 29. doi: 10.3109/13697137.2012.707385
23. Duncan DT, Sharifi M, Melly SJ, Marshall R, Sequist TD, Rifas-Shiman SL, et al. Characteristics of walkable built environments and BMI z-scores in children: evidence from a large electronic health record database. Environ Health Perspect. 2014;122(12):1359-65. doi: 10.1289/ehp.1307704
24. Creatore MI, Glazier RH, Moineddin R, Fazli GS, Johns A, Gozdyra P, et al. Association of Neighborhood Walkability With Change in Overweight, Obesity, and Diabetes. JAMA. 2016;315(20):2211-20. doi: 10.1001/ jama.2016.5898
25. Michael YL, Nagel CL, Gold R, Hillier TA. Does change in the neighborhood environment prevent obesity in older women? Soc Sci Med. 2014;102:129- 37. doi: 10.1016/j.socscimed.2013.11.047
26. Gutiérrez-López JA, Caballero-Pérez YB, Escamilla-Triana RA. Índice de caminabilidad para la ciudad de Bogotá. Revista de Arquitectura. 2019;21(1):8-20. doi: 10.14718/RevArq.2019.21.1.1884
27. Yu E, Lippert AM. Neighborhood crime rate, weight-related behaviors, and obesity: A systematic review of the literature. Sociol Comp. 2016;10(3):187-207. doi: 10.1111/soc4.12356
Authors must state that they reviewed, validated and approved the manuscript's publication. Moreover, they must sign a model release that should be sent. A copy may be reviewed here