Identification of anthropometric variables for the determination of fat mass index as a diagnostic tool in obesity
PDF (Español (España))


Body Composition
Adipose Tissue
Body Mass Index
Data Mining

How to Cite

Rosero, R. ., González, C., Polanco, J., & Eraso-Checa, F. (2022). Identification of anthropometric variables for the determination of fat mass index as a diagnostic tool in obesity. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 9(4).


Introduction: The Body Mass Index (BMI) is insufficient to diagnose obesity. This document presents the Fat Mass Index (FMI) as the most accurate indicator for the diagnosis of this disease given its high level of connection with respect to the variables of fatty tissue.

Objective: To identify the most relevant kinanthropometric variables to determine the FMI as the most appropriate tool for the diagnosis of obesity in the population that attended an outpatient consultation.

Methodology: the retrospective study was developed with a population of 899 between 6 and 81 years of age. Data were obtained by bioimpedance measurement (Inbody® 770) over a two-year period (2017-2019). The information was refined using the CRISP-DM data mining methodology and statistically analyzed using the SPSS statistical program. Finally, the anthropometric variables associated with fatty tissue are related to the FMI and BMI by means of the coefficient of determination (R2).

Results: It will be reduced that the variables with the greatest relationship with fat mass are: hip circumference measurement, neck circumference measurement, abdomen circumference measurement and weight. However, the importance of this relationship depends on gender.

Conclusion: The relevance of this study is the calculation of fat mass from anthropometric measurements, in order to obtain the IMG and since the latter is specific for the diagnosis of overweight/obesity, the implementation of kinanthropometry in the consultation of patients with obesity. It is crucial for an adequate approach to the patient, as it does not have the technology to determine body composition.
PDF (Español (España))


Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell ML, Korinek J, et al. Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes. 2008;32(6):959-66.

Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories a systematic review and meta-analysis. JAMA. 2013;309:71-82.

Heymsfield SB, Cefalu WT. Does body mass index adequately convey a patient’s mortality risk? JAMA. 2013;309(1):87-8.

Clin N, Suárez-Carmona MW, Sánchez-Oliver AJ, Suárez-Carmona W, Antonio C, Sánchez-Oliver J. Índice de masa corporal: ventajas y desventajas de su uso en la obesidad. Relación con la fuerza y la actividad física. Nutr Clin Med. 2018;XII(3):128-39.

WHO. WHO Technical Report Series 894: Obesity: preventing and managing the global epidemic; Ginebra, Suiza. World Health Organization; 2000. Disponible en:

Ford ES, Mokdad AH. Epidemiology of obesity in the Western Hemisphere. J Clin Endocrinol Metab. 2008;93(11):1-8.

Okorodudu DO, Jumean MF, Montori VM, Romero-Corral A, Somers VK, Erwin PJ, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: A systematic review and meta-analysis. Int J Obes. 2010;34(5):791-9.

Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk: A systematic review and meta-analysis. J Am Coll Cardiol. 2010 sept. 28;56(14):1113-32.

Karastergiou K, Smith SR, Greenberg AS, Fried SK. Sex differences in human adipose tissues - The biology of pear shape. Biol Sex Differ. 2012;3(1):1-12.

Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS One. 2009;4(9):2-9.

Rodríguez O. Metodología para el Desarrollo de Proyectos en Minería de Datos CRISP-DM. 2010. Disponible en:

Wirth R. CRISP-DM?: Towards a Standard Process Model for Data Mining. Disponible en:

Orallo JH, Ramírez MJ. Introducción a la Minería de Datos. España: Pearson Educación; 2004.

Whitney DG, Miller F, Pohlig RT, Modlesky CM. BMI does not capture the high fat mass index and low fat-free mass index in children with cerebral palsy and proposed statistical models that improve this accuracy. Int J Obes. 2019;43(1):82-90.

Lyall DM, Celis-Morales C, Ward J, Iliodromiti S, Anderson JJ, Gill JM, et al. Association of body mass index with cardiometabolic disease in the UK biobank: A mendelian randomization study. JAMA Cardiol. 2017;2(8):882-9.

Liu J, Fox CS, Hickson DM, May WD, Hairston KG, Carr JJ, et al. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: The Jackson Heart Study. J Clin Endocrinol Metab. 2010;95(12):5419-26.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Revista Colombiana de Endocrinología, Diabetes & Metabolismo




Download data is not yet available.