STUDIA: An application to support carbohydrate counting by simulating glucose dynamics
PDF

Keywords

Mathematical model
Diabetes Mellitus
Mobile Applications
Computer Simulation
Carbohydrate counting

How to Cite

Builes-Montaño, C. E. ., Lema-Pérez, L., Monsalve-Arango, L. E. ., Naranjo-Cano, M. A., Sierra Duque, C. M. ., García-Tirado, J. F. ., & Alvarez Zapata, H. D. (2022). STUDIA: An application to support carbohydrate counting by simulating glucose dynamics. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 9(4). https://doi.org/10.53853/encr.9.4.770

Abstract

Background: Carbohydrate counting is often considered the ideal way to calculate meal-related insulin doses. Several ways to improve carbohydrate counting have been proposed.
Purpose: We propose that carbohydrate counting can be refined via simulation and, as such, we present a mobile application for the real-time simulation of postprandial glucose dynamics: STUDIA.
Methods: We used a phenomenological model of the gastrointestinal tract, coupled with the minimal glucose model to recreate postprandial glucose challenges in people with type 1 diabetes (T1DM). A requirements gathering process was implemented to define the application's functionalities and technical requirements. In addition, a person-based approach was used to characterize the users. Technological stacks were evaluated under the UX/UI criteria, learning curve, flexibility, and the possibility of executing mathematical models with a resolution of differential equations. We used data from one patient with T1DM to guide users in how to use the app. Continuous glucose monitor readings were used for comparison.
Results: STUDIA is a mobile app built on Android Studio® with a user interface and a web-based administrative module connected to AWS®. The app, allows glucose simulations for day-to-day carbohydrate counting refinement, and patient parameter modification based on previous glucose readings and data analysis for comparison and clinical research.
Conclusions: We present the first-of-a-kind postprandial simulation app based on a phenomenological model of the GI tract for patients with T1DM and its subsequent clinical research use. STUDIA will be tested in silico with data from multiple meals from patients with T1DM, and in a clinical trial.

https://doi.org/10.53853/encr.9.4.770
PDF

References

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwinet, N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes ResClin Pract. 2019 Sept;157:107843. https://doi.org/10.1016/j.diabres.2019.107843

Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes care. 1995;18(2):258-68. https://doi.org/10.2337/diacare.18.2.258

Adler AI, Boyko EJ, Ahroni JH, Stensel V, Forsberg R, Smith DG. Risk factors for diabetic peripheral sensory neuropathy. Results of the Seattle Prospective Diabetic Foot Study. Diabetes care. 1997;20(7):1162-7. https://doi.org/10.2337/diacare.20.7.1162

Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ (Clinical research ed). 1998;316(7134):823-8. https://doi.org/10.1136/bmj.316.7134.823

Lehto S, Ronnemaa T, Pyorala K, Laakso M. Predictors of stroke in middle-aged patients with non-insulin-dependent diabetes. Stroke. 1996;27(1):63-8. https://doi.org/10.1161/01.STR.27.1.63

Builes-Montaño CE, Chavarriaga A, Ballesteros L, Muñoz M, Medina S, Donado-Gomez JH, et al. Characteristics of hyperglycemic crises in an adult population in a teaching hospital in Colombia. Journal of Diabetes & Metabolic Disorders. 2018;17(2):143-8. https://doi.org/10.1007/s40200-018-0353-7

Nathan DM. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study at 30 Years: Overview. Diabetes care. 2014;37(1):9-16. https://doi.org/10.2337/dc13-2112

The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. New England Journal of Medicine. 1993;329(14):977-86. https://doi.org/10.1056/NEJM199309303291401

Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854-65. https://doi.org/10.1016/S0140-6736(98)07037-8

Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-Year Follow-up of Intensive Glucose Control in Type 2 Diabetes. New England Journal of Medicine. 2008;359(15):1577-89. https://doi.org/10.1056/NEJMoa0806470

Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2019. Diabetes care. 2019;42(Suppl 1):S90-s102. https://doi.org/10.2337/dc19-S009

Villegas Perrasse A, Abad SB, Faciolince S, Hernández N, Maya C, Parra L, et al. Controlling diabetes mellitus and its complications in Medellin, Colombia, 2001-2003. Rev Panam Salud Publica. 2006;20(6):393-402. https://doi.org/10.1590/S1020-49892006001100005

Machado Alba JE, Moncada Escobar JC, Mesa Escobar G. Antidiabetic drugs prescription patterns among a group of patients in Colombia. Rev Panam Salud Publica. 2007;22(2):124-31. https://doi.org/10.1590/S1020-49892007000700007

Barengo NC, Camacho S, López PA, Camacho PA, García AA, Hincapié JA, et al. Patrones de prescripción de medicamentos para la diabetes mellitus tipo 2 en cinco departamentos de Colombia, en 2014. Rev Facu Nal de Salud Pública. 2018;36:58-65. https://doi.org/10.17533/udea.rfnsp.v36n2a08

Davidson PC, Hebblewhite HR, Steed RD, Bode BW. Analysis of guidelines for basal-bolus insulin dosing: basal insulin, correction factor, and carbohydrate-to-insulin ratio. Endocr Pract. 2008;14(9):1095-101. https://doi.org/10.4158/EP.14.9.1095

Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes care. 2013;36(11):3821-42. https://doi.org/10.2337/dc13-2042

Souto DL, Zajdenverg L, Rodacki M, Rosado EL. Impact of advanced and basic carbohydrate counting methods on metabolic control in patients with type 1 diabetes. Nutrition. 2014;30(3):286-90. https://doi.org/10.1016/j.nut.2013.08.010

Builes-Montaño CE, Ortiz-Cano NA, Ramirez-Rincón A, Rojas-Henao NA. Efficacy and safety of carbohydrate counting versus other forms of dietary advice in patients with type 1 diabetes mellitus: A systematic review and meta-analysis of randomized clinical trials. J Hum Nutr Diet. 2022. https://doi.org/10.1111/jhn.13017

Bozzetto L, Giorgini M, Alderisio A, Costagliola L, Giacco A, Riccardi G, et al. Glycaemic load versus carbohydrate counting for insulin bolus calculation in patients with type 1 diabetes on insulin pump. Acta Diabetol. 2015;52(5):865-71. https://doi.org/10.1007/s00592-015-0716-1

Krebs JD, Parry Strong A, Cresswell P, Reynolds AN, Hanna A, Haeusler S. A randomised trial of the feasibility of a low carbohydrate diet vs standard carbohydrate counting in adults with type 1 diabetes taking body weight into account. Asia Pac J Clin Nutr. 2016;25(1):78-84. https://doi.org/10.6133/apjcn.2016.25.1.11

Holt SH, Miller JC, Petocz P. An insulin index of foods: the insulin demand generated by 1000-kJ portions of common foods. The American journal of clinical nutrition. 1997;66(5):1264-76. https://doi.org/10.1093/ajcn/66.5.1264

Bell KJ, Gray R, Munns D, Petocz P, Steil G, Howard G, et al. Clinical Application of the Food Insulin Index for Mealtime Insulin Dosing in Adults with Type 1 Diabetes: A Randomized Controlled Trial. Diabetes technology & therapeutics. 2016;18(4):218-25. https://doi.org/10.1089/dia.2015.0254

Gingras V, Haidar A, Messier V, Legault L, Ladouceur M, Rabasa-Lhoret R. A Simplified Semiquantitative Meal Bolus Strategy Combined with Single- and Dual-Hormone Closed-Loop Delivery in Patients with Type 1 Diabetes: A Pilot Study. Diabetes technology & therapeutics. 2016;18(8):464-71. https://doi.org/10.1089/dia.2016.0043

Álvarez HD, Peña M. Modelamiento de Sistemas de Inferencia Borrosa Tipo Takagi-Sugeno. Rev Avances en Sistemas Informática. 2004;1(1):1-11.

Lema-Perez L, Garcia-Tirado J, Builes-Montano C, Alvarez H. Phenomenological-Based model of human stomach and its role in glucose metabolism. J Theor Biol. 2019;460:88-100. https://doi.org/10.1016/j.jtbi.2018.10.024

Blandón LA, Gallego MSC, Patino SIO, Pérez LL. A Phenomenological-Based Model for the Small Intestine Role in Human Glucose Homeostasis. 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC); 2019 15-18 Oct. 2019. https://doi.org/10.1109/CCAC.2019.8920843

Builes-Montaño CE, Lema-Perez L, Garcia-Tirado J, Alavarez H. Main glucose hepatic fluxes in healthy subjects predicted from a phenomenological-based model. Comput Biol Med. 2022;142:105232. https://doi.org/10.1016/j.compbiomed.2022.105232

Garcia-Tirado J, Colmegna P, Corbett JP, Ozaslan B, Breton MD. In Silico Analysis of an Exercise-Safe Artificial Pancreas With Multistage Model Predictive Control and Insulin Safety System. Journal of diabetes science and technology. 2019;13(6):1054-64. https://doi.org/10.1177/1932296819879084

Meade LT, Rushton WE. Accuracy of Carbohydrate Counting in Adults. Clin Diabetes. 2016;34(3):142-7. https://doi.org/10.2337/diaclin.34.3.142

Kawamura T, Takamura C, Hirose M, Hashimoto T, Higashide T, Kashihara Y, et al. The factors affecting on estimation of carbohydrate content of meals in carbohydrate counting. Clin Pediatr Endocrinol. 2015;24(4):153-65. https://doi.org/10.1297/cpe.24.153

Wolpert HA, Atakov-Castillo A, Smith SA, Steil G. Dietary fat acutely increases glucose concentrations and insulin requirements in patients with type 1 diabetes: implications for carbohydrate-based bolus dose calculation and intensive diabetes management. Diabetes care. 2013;36(4):810-6. https://doi.org/10.2337/dc12-0092

Garcia-Lopez JM, Gonzalez-Rodriguez M, Pazos-Couselo M, Gude F, Prieto-Tenreiro A, Casanueva F.. Should the amounts of fat and protein be taken into consideration to calculate the lunch prandial insulin bolus? Results from a randomized crossover trial. Diabetes technology & therapeutics. 2013;15(2):166-71. https://doi.org/10.1089/dia.2012.0149

Rizun N, Taranenko Y. Simulation models of human decision-making processes. Management Dynamics in the Knowledge Economy. 2014;2(2):241-64.

Pagé C, Bernier P-M, Trempe M. Using video simulations and virtual reality to improve decision-making skills in basketball. Journal of sports sciences. 2019;37(21):2403-10. https://doi.org/10.1080/02640414.2019.1638193

Benjamin P, Koola P, Akella K, Graul M, Painter M. Using Simulation Based Training Methods for Improved Warfighter Decision Making. International Conference on Augmented Cognition; 2013: Springer. https://doi.org/10.1007/978-3-642-39454-6_2

Larkin A, Hanley KL, Warters M, Littman G. Virtual Simulation Improves Clinical Decision-Making in Managing Type 2 Diabetes. Diabetes. 2018;67(Supplement 1):688-P. https://doi.org/10.2337/db18-688-P

Sperl-Hillen J, O'Connor P, Ekstrom H, Rush W, Asche S, Fernandes O, et al. Using Simulation Technology to Teach Diabetes Care Management Skills to Resident Physicians. Journal of diabetes science and technology. 2013;7(5):1243-54. https://doi.org/10.1177/193229681300700514

Ajmera I, Swat M, Laibe C, Le Novère N, Chelliah V. The impact of mathematical modeling on the understanding of diabetes and related complications. CPT Pharmacometrics Syst Pharmacol. 2013;2:e54. https://doi.org/10.1038/psp.2013.30

Lema-Perez L, Aguirre-Zapata E, Garcia-Tirado J. Recent advances in mathematical models for the understanding and treatment of Type 1 Diabetes Mellitus. 2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC); 2015 14-16 Oct. 2015.

Fritzen K, Heinemann L, Schnell O. Modeling of Diabetes and Its Clinical Impact. Journal of diabetes science and technology. 2018;12(5):976-84. https://doi.org/10.1177/1932296818785642

Colmegna P, Bisio A, Mcfadden R, Wakeman CA, Oliveri RN, Breton M. 97-LB: Bringing Simulation Technologies to People with T1D: A Pilot Study. Diabetes. 2021;70(Supplement_1). https://doi.org/10.2337/db21-97-LB

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Revista Colombiana de Endocrinología, Diabetes & Metabolismo

Dimensions


PlumX


Downloads

Download data is not yet available.