Abstract
Background: In obesity, mitochondrial dysfunction and increased oxidative stress are observed, characterized by changes in the structure of mitochondria, accumulation of mutations in mitochondrial DNA, and an overproduction of reactive oxygen species (ROS), which results in an inefficient response in ATP production.
Purpose: The main objective of this research was to evaluate the levels of oxidative stress and its impact on mitochondrial morphology in term placentas of obese pregnant women.
Methodology: Analytical retrospective cross-sectional cohort study. 30 placenta samples were obtained from full-term pregnant women with no previous pathological history who attended an IPS in Cali. They were divided into three study groups: Control group, CO=10 (BMI 18.5kg/m2- 24.9kg/m2); Pregestational obesity, OP=10 BMI >30 kg/m2; Gestational obesity, OG= 10 (BMI?29.9kg/m2 with increase>13kg). The analysis of oxidative stress damage was evaluated by means of anti-Nitrotyrosine (NT) antibody; Mitochondrial morphology was analyzed with TEM (Transmission Electron Microscopy).
Results: NT residues were present in greater quantities in the placentas of mothers with obesity, compared to the control group (CO:11.64+-0.40; OG: 14.7+- 0.92; OP:17.44+- 2.13; p?0.02). The mitochondria present in the terminal villi of the syncytiotrophoblast of the OP and OG groups showed changes in their number, size and shape. In addition, alterations in the mitochondrial cristae, loss of the internal and external mitochondrial membranes and fragmentation of mitochondria in the cytoplasm of the placental cell were identified.
Conclusions: Maternal obesity caused significant changes in oxidative stress levels, evaluated by nitrotyrosine residues, as well as severe damage in mitochondrial morphology. These changes could negatively affect the metabolism of biomolecules and placental functioning, inducing a persistent inflammatory process mediated by oxygen free radicals.
References
Ezzati M, Lopez AD, Rodgers A, Murray CJL. Comparative Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. World Health Organization; 2004.
Malo-Serrano M, Castillo N, Pajita D. La obesidad en el mundo. An Fac Med. 2017;78(2):173-8. http://dx.doi.org/10.15381/anales.v78i2.13213
Organización Mundial de la Salud. Obesidad y sobrepeso [internet]. OMS; 2024. [citado 2024 en. 31]. https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight
FAO. FAO publications catalogue 2023 [internet]. Roma: FAO; 2023. [citado 2024 en. 31]. https://openknowledge.fao.org/handle/20.500.14283/cc7285en
Fonseca Centeno ZY, Heredia Vargas AP, Ocampo Tellez PR, Forero Torres AY, Sarmiento Duenas OL, Álvarez Uribe MC, et al. Encuesta nacional de la situación nutricional en Colombia 2010 [internet]. Colombia: Instituto Colombiano de Bienestar Familiar; 2011. [Citado 2024 en. 31]. https://bibliotecadigital.udea.edu.co/handle/10495/25325
Organización Mundial de la Salud. Enfermedades no transmisibles [internet]. Organización Mundial de la Salud; 2023. [citado 2024 en. 31]. https://www.who.int/es/news-room/fact-sheets/detail/noncommunicable-diseases
EE Canal Disponible. Colombia gasta $25 billones en tratamiento de enfermedades prevenibles: Minsalud [video de Youtube] [internet]. 2015. [citado 2024 en. 31]. https://www.youtube.com/watch?v=HGXOVo1yNNc
Reynolds RM, Allan KM, Raja EA, Bhattacharya S, McNeill G, Hannaford PC, et al. Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1 323 275 person years. BMJ. 2013;347:f4539. https://doi.org/10.1136/bmj.f4539
Knight BA, Shields BM, Hattersley AT, Vaidya B. Maternal hypothyroxinaemia in pregnancy is associated with obesity and adverse maternal metabolic parameters. Eur J Endocrinol. 2016;174(1):51-7. https://doi.org/10.1530/eje-15-0866
Vaughan OR, Fowden AL. Placental metabolism: substrate requirements and the response to stress. Reprod Domest Anim. 2016;51(supl. 2):25-35. https://doi.org/10.1111/rda.12797
Bax BE, Bloxam DL. Energy metabolism and glycolysis in human placental trophoblast cells during differentiation. Biochim Biophys Acta. 1997;1319(2-3):283-92. https://doi.org/10.1016/s0005-2728(96)00169-7
Roa I, Smok C, Prieto R. Placenta: anatomía e histología comparada. Int J Morphol. 2012;30(4):1490-6. http://dx.doi.org/10.4067/S0717-95022012000400036
Kelly AC, Powell TL, Jansson T. Placental function in maternal obesity. Clin Sci. 2020;134(8):961-84. https://doi.org/10.1042/cs20190266
Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect. 2015;4(1):R1-15. https://doi.org/10.1530/ec-14-0092
Gallo LA, Barrett HL, Dekker Nitert M. Review: placental transport and metabolism of energy substrates in maternal obesity and diabetes. Placenta. 2017;54:59-67. https://doi.org/10.1016/j.placenta.2016.12.006
Pustovrh MC, Jawerbaum A, Capobianco E, White V, Martínez N, López-Costa JJ, et al. Oxidative stress promotes the increase of matrix metalloproteinases-2 and -9 activities in the feto- placental unit of diabetic rats. Free Radic Res. 2005;39(12):1285-93.
Fattuoni C, Mandò C, Palmas F, Anelli GM, Novielli C, Parejo Laudicina E, et al. Preliminary metabolomics analysis of placenta in maternal obesity. Placenta. 2018;61:89-95. https://pubmed.ncbi.nlm.nih.gov/29277276/
Zambon M, Mandò C, Lissoni A, Anelli GM, Novielli C, Cardellicchio M, et al. Inflammatory and oxidative responses in pregnancies with obesity and periodontal disease. Reprod Sci. 2018;25(10):1474-84. https://doi.org/10.1177/1933719117749758
Lin L, Chen K, Khalek WA, Ward JL, Yang H, Chabi B, et al. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3. PLoS One. 2014;9(1):e85636. https://pubmed.ncbi.nlm.nih.gov/24454908/
Cnop M, Igoillo-Esteve M, Rai M, Begu A, Serroukh Y, Depondt C, et al. Central role and mechanisms of ?-cell dysfunction and death in friedreich ataxia-associated diabetes. Ann Neurol. 2012;72(6):971-82. https://doi.org/10.1002/ana.23698
Oliva K, Barker G, Riley C, Bailey MJ, Permezel M, Rice GE, et al. The effect of pre-existing maternal obesity on the placental proteome: two-dimensional difference gel electrophoresis coupled with mass spectrometry. J Mol Endocrinol. 2012;48(2):139-49. https://doi.org/10.1530/JME-11-0123
Hu C, Yang Y, Li J, Wang H, Cheng C, Yang L, et al. Maternal Diet-Induced Obesity Compromises Oxidative Stress Status and Angiogenesis in the Porcine Placenta by Upregulating Nox2 Expression. Oxid Med Cell Longev. 2019:2481592. https://doi.org/10.1155/2019/2481592
Villalobos-Labra R, Sáez PJ, Subiabre M, Silva L, Toledo F, Westermeier F, et al. Pre-pregnancy maternal obesity associates with endoplasmic reticulum stress in human umbilical vein endothelium. Biochem Biophys Acta Mol Basis Dis. 2018;1864(10):3195-210. https://doi.org/10.1016/J.BBADIS.2018.07.007
Mandò C, Anelli GM, Novielli C, Panina-Bordignon P, Massari M, Mazzocco MI, et al. Impact of obesity and hyperglycemia on placental mitochondria. Oxid Med Cell Longev. 2018:2378189. https://doi.org/10.1155/2018/2378189
Rodríguez CP, Smith Muñoz Y, Castellanos JA, Pustovrh MC. Expresión de la enzima 11? hidroxiesteroide deshidrogenasa tipo 2 en placenta a término de la gestante obesa. Rev Colomb Endocrinol Diabet Metab. 2023;10(3):e813. https://doi.org/10.53853/encr.10.3.813
Saben J, Lindsey F, Zhong Y, Thakali K, Badger TM, Andres A, et al. Maternal obesity is associated with a lipotoxic placental environment. Placenta. 2014;35(3):171. https://doi.org/10.1016/j.placenta.2014.01.003
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2024 Revista Colombiana de Endocrinología, Diabetes & Metabolismo