Advancing body composition analysis: Transitioning beyond conventional BMI standards
PDF
html

Keywords

Body composition
Phase angle
Body mass index
Obesity classification
Bioelectrical impedance
Muscle mass
Fat mass
Anthropometry

How to Cite

Rosero-Revelo, R., Tamayo, M., & Griebeler, M. L. (2025). Advancing body composition analysis: Transitioning beyond conventional BMI standards. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 12(3). https://doi.org/10.53853/encr.12.3.932

Abstract

Background: Body mass index (BMI) remains the primary tool for obesity classification despite its limitations in assessing body composition. This study aimed to evaluate the relationship between different body composition parameters and compare World Health Organization (WHO) and National Health and Nutrition Examination Survey (NHANES) classification systems.

Methods: In this cross-sectional study of 3,255 patients (74.3% women) from a Colombian obesity and metabolism center, we analyzed body composition using bioelectrical impedance analysis. We assessed the concordance between the World Health Organization and the National Health and Nutrition Examination Survey classifications, and examined correlations between body composition parameters, with particular focus on phase angle (PhA) as a predictor of muscle mass.

Results: While body mass index showed a strong correlation with body fat mass (? = 0.929, p < 0.001), it poorly predicted muscle mass. The World Health Organization and the National Health and Nutrition Examination Survey classifications showed fair overall agreement (? = 0.39), with better concordance in women (? = 0.43) than men (? = 0.28). Multiple regression analyses revealed PhA as a strong predictor of muscle mass (? = 1.032, p < 0.0001, R² = 0.332) but not fat mass (p = 0.525, R² = 0.055).

Conclusions: While body mass index adequately predicts adiposity, it falls short in assessing muscle mass. Phase angle emerges as a promising predictor of muscle mass, independent of age and sex, suggesting its potential utility in clinical assessment of body composition.

https://doi.org/10.53853/encr.12.3.932
PDF
html

References

Bray GA, Macdiarmid J. The epidemic of obesity. West J Med. 2000;172(2):78-79. https://doi.org/10.1136/ewjm.172.2.78

Gutin I. In BMI we trust: Reframing the body mass index as a measure of health. Soc Theory Health. 2018;16:256–271. https://doi.org/10.1057/s41285-017-0055-0

Bosy-Westphal A, Müller MJ. Diagnosis of obesity based on body composition-associated health risks—Time for a change in paradigm. Obes Rev. 2021;22(S2):e1390. https://doi.org/10.1111/obr.13190

Shea JL, King MTC, Yi Y, Gulliver W, Sun G. Body fat percentage is associated with cardiometabolic dysregulation in BMI-defined normal weight subjects. Nutr Metab Cardiovasc Dis. 2012;22(9):741-747. https://doi.org/10.1016/j.numecd.2010.11.009

Roberson LL, Aneni EC, Maziak W, Agatston A, Feldman T, Rouseff M, et al. Beyond BMI: The ‘metabolically healthy obese’ phenotype & its association with clinical/ subclinical cardiovascular disease and all-cause mortality-a systematic review. BMC Public Health. 2014;14:14. https://doi.org/10.1186/1471-2458-14-14

Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis - Clinical relevance and applicability of impedance parameters. Clin Nutr. 2012;31(6):854-861. https://doi.org/10.1016/j.clnu.2012.05.008

Ward LC, Brantlov S. Bioimpedance basics and phase angle fundamentals. Rev Endocr Metab Disord. 2023;24:381-391. https://doi.org/10.1007/s11154-022-09780-3

da Silva BR, Orssol CE, Gonzalez MC, Sicchieri JMF, Mialich MS, Jordao CM, et al. Phase angle and cellular health: inflammation and oxidative damage. Rev Endocr Metab Disord. 2023;24:543-562. https://doi.org/10.1007/s11154-022-09775-0

Ferraz VD, da Costa Pereira JP, Pinho-Ramiro CPS, Floro-Arcoverde GMP, Rodrigues IG, Chagas CL, et al. Is phase angle associated with visceral adiposity and cardiometabolic risk in cardiology outpatients? Eur J Clin Nutr. 2024;78:527-533. https://doi.org/10.1038/s41430-024-01435-7

Bosy-Westphal A, Schautz B, Later W, Kehayias JJ, Gallagher D, Müller MJ. What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur J Clin Nutr. 2013;67: S14-S21. https://doi.org/10.1038/ejcn.2012.160

Di Vincenzo O, Marra M, Sacco AM, Pasanisi F, Scalfi L. Bioelectrical impedance (BIA)-derived phase angle in adults with obesity: A systematic review. Clin Nutr. 2021;40(9):5238-5248. https://doi.org/10.1016/j.clnu.2021.07.035

Matias CN, Campa F, Nunes CL, Francisco R, Jesus F, Cardoso M, et al. Phase angle is a marker of muscle quantity and strength in overweight/obese former athletes. Int J Environ Res Public Health. 2021;18(12):6649. https://doi.org/10.3390/ijerph18126649

Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS One. 2009:7038. https://doi.org/10.1371/journal.pone.0007038

Correa-Rodríguez M, González-Ruíz K, Rincón-Pabón D, Izquierdo M, García-Hermoso A, Agostinis-Sobrinho C, et al. Normal-weight obesity is associated with increased cardiometabolic risk in young adults. Nutrients. 2020;12(4):1106. https://doi.org/10.3390/nu12041106

Gómez-Zorita S, Queralt M, Vicente MA, González M, Portillo MP. Metabolically healthy obesity and metabolically obese normal weight: A review. J Physiol Biochem. 2021;77(1):175-189. https://doi.org/10.1007/s13105-020-00781-x

Wijayatunga NN, Dhurandhar EJ. Normal weight obesity and unaddressed cardiometabolic health risk—a narrative review. Int J Obes. 2021;45:2141-2155. https://doi.org/10.1038/s41366-021-00858-7

Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69-71.

Ranasinghe C, Gamage P, Katulanda P, Andraweera N, Thilakarathne S, Tharanga P. Relationship between body mass index (BMI) and body fat percentage, estimated by bioelectrical impedance, in a group of Sri Lankan adults: A cross sectional study. BMC Public Health. 2013;13:797. https://doi.org/10.1186/1471-2458-13-797

Cristina M, Barbosa-Silva G, Barros AJ, Wang J, Heymsfield SB, Pierson RN. Bioelectrical impedance analysis: population reference values for phase angle by age and sex. The Am J Clin Nutr. 2005;82(1):49-52. https://doi.org/10.1093/ajcn/82.1.49

Lopez-Lopez JP, Del Toro MR, Martinez-Bello D, Garcia-Peña A, O’Donovan G, Perez-Mayorga M, et al., Sex differences in cardiovascular disease risk factor prevalence, morbidity, and mortality in Colombia: Findings from the prospective urban rural epidemiology (PURE) study. Glob Heart. 2024;19(1):10. https://doi.org/10.5334/gh.1289

Lovejoy JC, Sainsbury A. Sex differences in obesity and the regulation of energy homeostasis. Obes Rev. 2009;10(2):154-167. https://doi.org/10.1111/j.1467-789X.2008.00529.x

Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL. Indices of relative weight and obesity. J Chron Dis. 1972;25(6-7):329-343. https://doi.org/10.1016/0021-9681(72)90027-6

Tallis J, James RS, Seebacher F. The effects of obesity on skeletal muscle contractile function. J Exp Biol. 2018;221(13):jeb163840. https://doi.org/10.1242/jeb.163840

Cava E, Yeat NC, Mittendorfer B. Preserving healthy muscle during weight loss. Am Soc Nutr. 2017;8(3):511-519. https://doi.org/10.3945/an.116.014506

Jung HN, Kim SO, Jung CH, Lee WJ, Kim MJ, Cho YK. Preserved muscle strength despite muscle mass loss after bariatric metabolic surgery: A systematic review and meta-analysis. Obes Surg. 2023;33:3422-3430. https://doi.org/10.1007/s11695-023-06796-9

Conte C, Hall KD, Klein S. Is weight loss-induced muscle mass loss clinically relevant? JAMA. 2024;332(1):9-10. https://doi.org/10.1001/jama.2024.6586

Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest. 1990;86(5):1423-1427. https://doi.org/10.1172/jci114857

Acosta A, Camilleri M, Abu Dayyeh B, Calderon G, Gonzalez D, McRae A, et al. Selection of antiobesity medications based on phenotypes enhances weight loss: A pragmatic trial in an obesity clinic. Obesity. 2021;29(4):662-671. https://doi.org/10.1002/oby.23120

Salmón-Gómez L, Catalán V, Frühbeck G, Gómez-Ambrosi J. Relevance of body composition in phenotyping the obesities. Rev Endocr Metab Disord. 2023;24:809-823. https://doi.org/10.1007/s11154-023-09796-3

Prado CMM, Siervo M, Mire E, Heymsfield SB, Stephan BCM, Broyles S, et al. A population-based approach to define body-composition phenotypes. Am J Clin Nutr. 2014;99(6):1369-1377. https://doi.org/10.3945/ajcn.113.078576

JH Lee, Jun HS. Role of myokines in regulating skeletal muscle mass and function. Frontiers. 2019;10(2019). https://doi.org/10.3389/fphys.2019.00042

Kim G, Lee SE, Jun JE, Bin Lee Y, Ahn J, Cheol-Bae J, et al. Increase in relative skeletal muscle mass over time and its inverse association with metabolic syndrome development: A 7-year retrospective cohort study. Cardiovasc Diabetol. 2018;17(2018):23. https://doi.org/10.1186/s12933-018-0659-2

Gu X, Wang L, Liu S, Shan T. Adipose tissue adipokines and lipokines: Functions and regulatory mechanism in skeletal muscle development and homeostasis. Metab Clin Exp. 2023;139:155379. https://doi.org/10.1016/j.metabol.2022.155379

Koster A, Murphy RA, Eiriksdottir G, Aspelund T, Sigurdsson S, Lang TF, et al. Fat distribution and mortality: The AGES-Reykjavik study. Obesity. 2015;23(4):893-897. https://doi.org/10.1002/oby.21028

Goossens GH.The metabolic phenotype in obesity: Fat mass, body fat distribution, and adipose tissue function. Obes Facts. 2017;10(3):207-215. https://doi.org/10.1159/000471488

Després JP. Body fat distribution and risk of cardiovascular disease: An update. Circulation. 2012;126(10). https://doi.org/10.1161/CIRCULATIONAHA.111.067264

Lee SWS, Son JY, Kim JM, Hwang S, Han JS, Heo NJ. Body fat distribution is more predictive of all?cause mortality than overall adiposity. Diabet Obes Metab. 2017;20(1):141-147. https://doi.org/10.1111/dom.13050

Abraham TM, Pedley A, Massaro JM, Hoffmann U, Fox CS. Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors. Circulation. 2015;132(17). https://doi.org/10.1161/CIRCULATIONAHA.114.015000

Ruiz-Castell M, Samouda H, Bocquet V, Fagherazzi G, Stranges S, Huiart L. Estimated visceral adiposity is associated with risk of cardiometabolic conditions in a population based study. Sci Rep. 2021;11:9121. https://doi.org/10.1038/s41598-021-88587-9

Rosero RJ, Polanco JP, Ciro V, Uribe A, Manrique H, Sánchez PE. Proposal for a multidisciplinary clinical approach to obesity. J Med Clin Res Rev. 2020;4(12):1-11. https://doi.org/10.33425/2639-944X.1185

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Revista Colombiana de Endocrinología, Diabetes & Metabolismo

Dimensions


PlumX


Downloads

Download data is not yet available.