Fisiopatología y mecanismos de acción del ejercicio en el manejo de la diabetes mellitus tipo 2
HTML
PDF

Palabras clave

Diabetes Mellitus Tipo 2
Resistencia a la Insulina
Obesidad
Ejercicio Físico
Glucemia
Músculo Esquelético
Mitocondrias
Tejido Adiposo
Insulina
Metabolismo
Citocinas
Entrenamiento de Fuerza

Cómo citar

León-Ariza, H. H., Rojas Guardela, M. J., & Coy Barrera, A. F. . (2023). Fisiopatología y mecanismos de acción del ejercicio en el manejo de la diabetes mellitus tipo 2 . Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 10(2). https://doi.org/10.53853/encr.10.2.790

Resumen

Contexto: en la actualidad, la diabetes mellitus tipo 2 (DMT2) constituye una enfermedad de alta prevalencia en el mundo, se caracteriza por una incapacidad para regular la glucosa plasmática e implica para su desarrollo varias fases, las cuales incluyen la resistencia a la insulina y la disfunción de las células beta pancreáticas.

Los mecanismos biológicos que llevan al desarrollo de la enfermedad implican alteraciones intracelulares en órganos como el músculo esquelético, secundarios a lipotoxicidad y glucotoxicidad, los cuales favorecen el desarrollo de resistencia a la insulina, adicionalmente, la presencia de estas mismas alteraciones en células beta, que da como resultado la reducción en la producción de insulina.

Objetivo: comprender los mecanismos biológicos de cómo el ejercicio influye tanto en la prevención como manejo de la DMT2.

Metodología: se revisaron artículos en bases de datos electrónicas (últimos diez años) y textos guías de Endocrinología y Fisiología del Ejercicio, con relación a la DMT2 y el ejercicio.

Resultados: el ejercicio físico, tanto de fuerza como de resistencia, ha demostrado mejorar la actividad metabólica muscular, reducir la inflamación sistémica, favorecer la función mitocondrial, modificar la composición corporal y contribuir a la función de las células beta. Al parecer, buena parte de estos efectos son secundarios a la acción endocrina del músculo, pero también al impacto metabólico y energético que el ejercicio implica.

Conclusiones: esta revisión demuestra los mecanismos biológicos de cómo el ejercicio es un pilar clave en la prevención y el tratamiento de la DMT2.

https://doi.org/10.53853/encr.10.2.790
HTML
PDF

Citas

Blonde L, Umpierrez GE, McGill JB, Reddy SS, Berga SL, Bush M, et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr Pract. 2022 oct;28(10):923-1049. https://doi.org/10.1016/j.eprac.2022.08.002

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022 en.;183:109119. https://doi.org/10.1016/j.diabres.2021.109119

Kirwan JP, Sacks J, Nieuwoudt S. The essential role of exercise in the management of type 2 diabetes. Cleve Clin J Med. 2017 jul. 1;84(7 supl. 1):S15-21. https://doi.org/10.3949/ccjm.84.s1.03

Nery C, De Moraes SR, Novaes KA, Bezerra MA, Silveira PV, Lemos A. Effectiveness of resistance exercise compared to aerobic exercise without insulin therapy in patients with type 2 diabetes mellitus: a meta-analysis. Braz J Phys Ther. 2017 nov. 1;21(6):400-15. https://doi.org/10.1016/j.bjpt.2017.06.004

Karstoft K, Pedersen BK. Exercise and type 2 diabetes: Focus on metabolism and inflammation. Immunol Cell Biol. 2016 febr.;94(2):146-50. https://doi.org/10.1038/icb.2015.101

Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med. 2018 nov. 23;24(1):59.

https://doi.org/10.1186/s10020-018-0060-3

Weiss M, Steiner DF, Philipson LH, Feingold K, Anawalt B, Blackman M, et al. Insulin Biosynthesis, Secretion, Structure, and Structure-Activity Relationships. En: Endotext. South Dartmouth, Maryland, Estados Unidos: MDText.com, Inc.; 2000. https://pubmed.ncbi.nlm.nih.gov/25905258/

Henquin JC. Paracrine and autocrine control of insulin secretion in human islets: evidence and pending questions. Am J Physiol Endocrinol Metab. 2021 en. 1;320(1):E78-86. https://doi.org/10.1152/ajpendo.00485.2020

Henquin JC. Non-glucose modulators of insulin secretion in healthy humans: (dis)similarities between islet and in vivo studies. Metabolism. 2021 sept.;122:154821.

https://doi.org/10.1016/j.metabol.2021.154821

Merrins MJ, Corkey BE, Kibbey RG, Prentki M. Metabolic cycles and signals for insulin secretion. Cell Metab. 2022 jul. 5;34(7):947-68. https://doi.org/10.1016/j.cmet.2022.06.003

Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function. J Cell Biol. 2018 jul. 1;217(7):2273-89. https://doi.org/10.1083/jcb.201802095

Posner BI. Insulin Signalling: The Inside Story. Can J Diabetes. 2017 febr. 1;41(1):108-13. https://doi.org/10.1016/j.jcjd.2016.07.002

Dimitriadis G, Mitron P, Lambadiari V, Maratou E, Raptis SA. Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract. 2011 ag.;93(supl. 1):S52-9. https://doi.org/10.1016/S0168-8227(11)70014-6

Smith RL, Soeters MR, Wüst RC, Houtkooper RH. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr Rev. 2018;39(4):489-517. https://doi.org/10.1210/er.2017-00211

Christensen AA, Gannon M. The Beta Cell in Type 2 Diabetes. Curr Diab Rep. 2019;19(9):81. https://doi.org/10.1007/s11892-019-1196-4

Abdul-Ghani MA, Defronzo RA. Pathogenesis of Insulin Resistance in Skeletal Muscle. J Biomed Biotechnol. 2010:476279. https://doi.org/10.1155/2010/476279

Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol. 2019 jun. 1;234(6):8152-61. https://doi.org/10.1002/jcp.27603

Iaccarino G, Franco D, Sorriento D, Strisciuglio T, Barbato E, Morisco C. Modulation of Insulin Sensitivity by Exercise Training: Implications for Cardiovascular Prevention. J Cardiovasc Transl Res. 2021 abr. 1;14(2):256-70. https://doi.org/10.1007/s12265-020-10057-w

Kasuga M. Structure and function of the insulin receptor-a personal perspective. Proc Jpn Acad Ser B Phys Biol Sci. 2019;95(10):581-9. https://doi.org/10.2183/pjab.95.039

Akhtar A, Sah SP. Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer's disease. Neurochem Int. 2020 my.;135:104707.

https://doi.org/10.1016/j.neuint.2020.104707

Ros Pérez M, Medina-Gómez G. Obesity, adipogenesis and insulin resistance. Endocrinol Nutr. 2011;58(7):360-9. https://doi.org/10.1016/j.endoen.2011.05.004

Savage DB, Watson L, Carr K, Adams C, Brage S, Chatterjee KK, et al. Accumulation of saturated intramyocellular lipid is associated with insulin resistance. J Lipid Res. 2019;60(7):1323-32. https://doi.org/10.1194/jlr.M091942

Hammerschmidt P, Brüning JC. Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci. 2022 ag. 5;79(8):395.

https://doi.org/10.1007/s00018-022-04401-3

Merz KE, Thurmond DC. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake Didactic Synopsis Major teaching points. Compr Physiol. 2020;10:785-809.

https://doi.org/10.1002/cphy.c190029

Zhang AM, Wellberg EA, Kopp JL, Johnson JD. Hyperinsulinemia in Obesity, Inflammation, and Cancer. Diabetes Metab J. 2021 my. 1;45(3):285-311.

https://doi.org/10.4093/dmj.2020.0250

Basnet R, Basnet TB, Basnet BB, Khadka S. Overview on thioredoxin-interacting protein (TXNIP): a potential target for diabetes intervention. Curr Drug Targets. 2022 mzo. 4;23(7):761-7. https://doi.org/10.2174/1389450123666220303092324

Mulder H. Transcribing ?-cell mitochondria in health and disease. Mol Metab. 2017 my. 31;6(9):1040-51. https://doi.org/10.1016/j.molmet.2017.05.014

Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010 febr. 15;12(4):537-77. https://doi.org/10.1089/ars.2009.2531

Usmani-Brown S, Perdigoto AL, Lavoie N, Clark P, Korah M, Rui J, et al. ? cell responses to inflammation. Mol Metab. 2019 sept. 1;27S(supl.):S104-13.

https://doi.org/10.1016/j.molmet.2019.06.013

Wada J, Nakatsuka A. Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes. Acta Med Okayama. 2016;70(3):151-8.

Kwak SH, Park KS, Lee KU, Lee HK. Mitochondrial metabolism and diabetes. J Diabetes Investig. 2010 oct. 19;1(5):161-9. https://doi.org/10.1111/j.2040-1124.2010.00047.x

Creviston T, Quinn L. Exercise and physical activity in the treatment of type 2 diabetes. Nurs Clin North Am. 2001 jun.;36(2):243-71. https://doi.org/10.1016/S0029-6465(22)02547-6

Widmann M, Nieß AM, Munz B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports Med. 2019 abr.;49(4):509-23. https://doi.org/10.1007/s40279-019-01070-4

Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diab Rep. 2013 jun.;13(3):435-44. https://doi.org/10.1007/s11892-013-0375-y

Scheffer D da L, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis. 2020 oct. 1;1866(10):165823. https://doi.org/10.1016/j.bbadis.2020.165823

Pedersen BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest. 2017 ag. 1;47(8):600-11. https://doi.org/10.1111/eci.12781

León-Ariza HH, Mendoza-Navarrete MP, Maldonado-Arango MI, Botero-Rosas DA. A systematic review of “myokines and metabolic regulation”. Apunts Medicina de l'Esport. 2018 oct. 1;53(200):155-62. https://doi.org/10.1016/j.apunts.2018.09.003

Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6-33.

León-Ariza HH, Botero-Rosas DA, Acero-Mondragón EJ, Reyes-Cruz D. Soluble interleukin-6 receptor in young adults and its relationship with body composition and autonomic nervous system. Physiol Rep. 2019 dic. 1;7(24):e14315.

https://doi.org/10.14814/phy2.14315

Wedell-Neergaard AS, Lang Lehrskov L, Christensen RH, Legaard GE, Dorph E, Larsen MK, et al. Exercise-Induced Changes in Visceral Adipose Tissue Mass Are Regulated by IL-6 Signaling: A Randomized Controlled Trial. Cell Metab. 2019 abr. 2;29(4):844-55.e3. https://doi.org/10.1016/j.cmet.2018.12.007-6 p

Levelt E, Pavlides M, Banerjee R, Mahmod M, Kelly C, Sellwood J, et al. Ectopic and Visceral Fat Deposition in Lean and Obese Patients With Type 2 Diabetes. J Am Coll Cardiol. 2016 jul. 5;68(1):53-63. https://doi.org/10.1016/j.jacc.2016.03.597

Izzo A, Massimino E, Riccardi G, Della Pepa G. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients. 2021 en. 1;13(1):1-18. https://doi.org/10.3390/nu13010183

Bajer B, Vlcek M, Galusova A, Imrich R, Penesova A. Exercise associated hormonal signals as powerful determinants of an effective fat mass loss. Endocr Regul. 2015;49(3):151-63. https://doi.org/10.4149/endo_2015_03_151

Gonzalez-Gil AM, Elizondo-Montemayor L. The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients. 2020 jun. 1;12(6):1899. https://doi.org/10.3390/nu12061899

Loimaala A, Groundstroem K, Rinne M, Nenonen A, Huhtala H, Parkkari J, et al. Effect of Long-Term Endurance and Strength Training on Metabolic Control and Arterial Elasticity in Patients With Type 2 Diabetes Mellitus. Am J Cardiol. 2009 abr. 1;103(7):972-7. https://doi.org/10.1016/j.amjcard.2008.12.026

Yang Z, Scott CA, Mao C, Tang J, Farmer AJ. Resistance exercise versus aerobic exercise for type 2 diabetes: A systematic review and meta-analysis. Sports Med. 2014 abr.;44(4):487-99. https://doi.org/10.1007/s40279-013-0128-8

Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, et al. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Med Sci Sports Exerc. 2022 feb. 1;54(2):353-68. https://doi.org/10.1249/MSS.0000000000002800

Murphy RM, Watt MJ, Febbraio MA. Metabolic communication during exercise. Nat Metab. 2020 sept. 1;2(9):805-16. https://doi.org/10.1038/s42255-020-0258-x

Consitt LA, Dudley C, Saxena G. Impact of Endurance and Resistance Training on Skeletal Muscle Glucose Metabolism in Older Adults. Nutrients. 2019 nov. 1;11(11).

https://doi.org/10.3390/nu11112636

Richter EA. Is GLUT4 translocation the answer to exercise-stimulated muscle glucose uptake? Am J Physiol Endocrinol Metab. 2021 febr. 1;320(2):E240-3.

https://doi.org/10.1152/ajpendo.00503.2020

Zacharewicz E, Hesselink MK, Schrauwen P. Exercise counteracts lipotoxicity by improving lipid turnover and lipid droplet quality. J Intern Med. 2018 nov. 1;284(5):505-18. https://doi.org/10.1111/joim.12729

McGarrah RW, Slentz CA, Kraus WE. The Effect of Vigorous- Versus Moderate-Intensity Aerobic Exercise on Insulin Action. Curr Cardiol Rep. 2016 dic.;18(12):117. https://doi.org/10.1007/s11886-016-0797-7

De Sousa RA, Improta-Caria AC, Cassilhas RC. Effects of physical exercise on memory in type 2 diabetes: a brief review. Metab Brain Dis. 2021;36:1559-63. https://doi.org/10.1007/s11011-021-00752-1

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista Colombiana de Endocrinología, Diabetes & Metabolismo

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.