Abstract
Background: The World Health Organization defines obesity as "an abnormal or excessive accumulation of fat that can be detrimental to health", the Spanish Consensus on Obesity of 2016 defines it "when the percentage of fat mass is greater than 33% in women". Bioelectrical impedance (BIA) quantifies fat mass from fat-free mass, it serves as a tool for the study, classification and diagnosis of obesity without the limitations of the Body Mass Index (BMI).
Purpose: To describe the body composition in women by means of the BIA, mainly the percentage of body fat (PGC) and the index of free mass of fat (IMLG) and to make a correlation between the classification of overweight and obesity according to the Body Mass Index (BMI) with the percentage of body fat (BFA) calculated by the BIA.
Methodology: Cross-sectional, retrospective study in a highly complex clinic. It included women between the ages of 18 and 60, evaluated in the endocrinology weight control consultation evaluated by BIA. A descriptive and correlation analysis was performed between BMI and PGC and IMLG through age groups. With non-parametric statistics, possible differences between age strata were established. Statistical difference was established with a p<0.05.
Results: 323 women with a mean age of 36.2 (± SD 9,578) years, mean weight of 73,351 kg (± SD 73,351), mean BMI 28,825 (± SD 4.69) were evaluated.
Mean PGC 40.98% (± SD 6.123), most of the patients were in the 29 to 39-year-old group (42.1%), 62 (19.2%) of the women had normal BMI, 158 (48.9%), 103 (31.8%) of the women were in some degree of obesity, by PGC 62 (19.19%) were overweight and 261 (80.80%) obese by PGC and like the BMI the number was higher in the group of 29-39 years, the IMLG was higher in the group of 29 to 39 years with important index levels.
Conclusions: Although the use of the BMI for the classification of obesity is the parameter that is currently most used both in the clinical and in the research field, we can see how this might not be the most accurate tool for said evaluation and should be gradually introduced. PGC use by methods such as BIA for classification.
References
Asociación Colombiana de Endocrinología Diabetes y Metabolismo. Recomendaciones de la asociación Colombiana de endocrinología, diabetes y metabolismo para el manejo de Obesidad. Bogotá: Grupo Distribuna; 2019.
Mechanick JI, Hurley DL, Garvey WT. Adiposity-based chronic disease as a new diagnostic term: The American association of clinical endocrinologists and American college of endocrinology position statement. Endocr Pract. 2017;23(3):372-8. https://doi.org/10.4158/EP161688.PS
Lecube A, Monereo S, Rubio MÁ, Martínez-de-Icaya P, Martí A, Salvador J, et al. Prevención, diagnóstico y tratamiento de la obesidad. Posicionamiento de la Sociedad Española para el Estudio de la Obesidad de 2016. Endocrinol Diabetes Nutr. 2017;64:15-22. http://dx.doi.org/10.1016/j.endonu.2016.07.002
Comas LM. Obesidad: visión actual de una enfermedad crónica. Med Balear. 2018;33(1):48-58. http://ibdigital.uib.es/greenstone/collect/medicinaBalear/index/assoc/Medicina/_Balear_/2018_vol/33_n1p04.dir/Medicina_Balear_2018_vol33_n1p048.pdf
Federación Latinoamericana de Sociedades de Obesidad. II Consenso Latinoamericano de Obesidad 2017. Santiago de Chile: Flaso; 2017. http://www.administracion.usmp.edu.pe/institutoconsumo/wp-content/uploads/LIBRO-II-CONSENSO-LATINOAMERICANO-DE-OBESIDAD-2017.pdf
Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, et al. The science of obesity management: An endocrine society scientific statement. Endocr Rev. 2018;39(2):79-132. https://doi.org/10.1210/er.2017-00253
Moreno MG. Definición y clasificación de la obesidad. Rev Med Clínica Las Condes. 2012;23(2):124-8. http://dx.doi.org/10.1016/S0716-8640(12)70288-2
Carbajal Azcona Á. Manual de Nutrición y Dietética. Madrid: Universidad Complutense de Madrid; 2013. https://docta.ucm.es/entities/publication/59da19f8-69fb-49e3-b337-3ea3dd8f9487
Rubio Herrera MA, Ballesteros Pomar MD, Sánchez Pernaute A, Torres García AJ. Manual de Obesidad Mórbida. Colombia: Editorial Médica Panamericana; 2015.
Alvero-Cruz JR, Correas Go?mez L, Ronconi M, Fernández Vázquez R, Porta i Manzañido J. La bioimpedancia eléctrica como método de estimación de la composición corporal: normas prácticas de utilización. Rev Andal Med Deport. 2011;4(4):167-74. http://www.redalyc.org/articulo.oa?id=323327668006
Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Suiza). 2014;14(6):10895-928. https://doi.org/10.3390/s140610895
Ministerio de Salud y Protección Social [Internet]. Bogotá: Ministerio de Salud y Protección Social; 2021. Grupos étnicos. [citado 2021]. www.minsalud.gov.co/proteccionsocial/promocion-social/Paginas/grupos-etnicos.aspx
Marra M, Sammarco R, de Lorenzo A, Iellamo F, Siervo M, Pietrobelli A, et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy x-ray absorptiometry (DXA): A critical overview. Contrast Media Mol Imaging. 2019. https://doi.org/10.1155/2019/3548284
Aristizábal JC, Olaya-Ramírez SM, Giraldo A. Comparación de la composición corporal obtenida por bioimpedancia e hidrodensitometría en mujeres de 38 a 60 años de Medellín-Colombia. Perspect Nutr Humana. 2015;17(1):141-50. https://doi.org/10.17533/udea.penh.v17n2a04
Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, et al. Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. Am J Clin Nutr. 1990;52(2):214-8. https://doi.org/10.1093/ajcn/52.2.214
Brunani A, Perna S, Soranna D, Rondanelli M, Zambon A, Bertoli S, et al. Body composition assessment using bioelectrical impedance analysis (BIA) in a wide cohort of patients affected with mild to severe obesity. Clin Nutr. 2021;40(6):3973-81. https://doi.org/10.1016/j.clnu.2021.04.033
Achamrah N, Colange G, Delay J, Rimbert A, Folope V, Petit A, et al. Comparison of body composition assessment by DXA and BIA according to the body mass index: A retrospective study on 3655 measures. PLoS One. 2018;13(7):1-13. https://doi.org/10.1371/journal.pone.0200465
di Vincenzo O, Marra M, Sacco AM, Pasanisi F, Scalfi L. Bioelectrical impedance (BIA)-derived phase angle in adults with obesity: A systematic review. Clin Nutr. 2021;40(9):5238-48. https://doi.org/10.1016/j.clnu.2021.07.035
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. https://doi.org/10.1093/ageing/afy169
Ramírez-Herrera CJ, Pico-Tarazona JC, Sánchez IA, Garavito-Peña FR, Mendoza-Romero D, Castro-Jiménez LE. Ángulo de fase como indicador de riesgo cardiovascular en estudiantes universitarios. Rev Colomb Cardiol. 2021;28(6):656-64. https://doi.org/10.24875/RCCAR.M21000109
Llames L, Baldomero V, Iglesias ML, Rodota LP. Valores del ángulo de fase por bioimpedancia eléctrica: estado nutricional y valor pronóstico. Nutr Hosp. 2013;28(2):286-95. https://dx.doi.org/10.3305/nh.2013.28.2.6306
Cubides Amézquita JR, Caiaffa Bermúdez N, Vera Angarita SA. Determinación del ángulo de fase por bioimpedancia en deportistas de la Esmic. En: Melo Buitrago PJ, Castro Jiménez LE, editores. Efectos del entrenamiento y control fisiológico en el deporte y la salud; 2020. p. 201-16. https://doi.org/10.21830/9789585284814.12
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Revista Colombiana de Endocrinología, Diabetes & Metabolismo