Role of selenium substitution in the treatment of hypothyroidism
PDF (Español (España))
xhtml (Español (España))

Keywords

Selenoproteina
tiroxina

How to Cite

González Clavijo, A. M., Muñoz Loaiza, J. D., Marquez Fernandez, A. ., Chavez Rodríguez, L. M., Campos González, L. A., Alfonso Cedeño, D. F., & Rojas Serna, L. F. (2021). Role of selenium substitution in the treatment of hypothyroidism. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 8(2). https://doi.org/10.53853/encr.8.2.603

Abstract

Introduction: Hypothyroidism is an endocrinopathy characterized by deficient action or production of thyroid hormones in the body. One of the less frequent etiologies is dysfunction of the deiodinase enzymes, which can be suspected when the thyroid profile shows elevated thyroid-stimulating hormone (TSH), high free thyroxine (T4) and low total or free triiodothyronine (T3).

Purpose: To discuss a case of hypothyroidism successfully treated with selenium and levothyroxine and to describe the role of selenium in thyroid disease.
Case presentation: 22-year-old man with abnormal thyroid profile characterized by elevated TSH, high free T4, and T3 in the lower limit, without finding of pituitary adenomas, mutations in the thyroid hormone receptor gene (THRB) or alterations in the Thyroxine-binding globulin, who was successfully treated with thyroid hormone and selenium supplementation.
Conclusion: when abnormal concentrations in TSH, T4 and T3 levels are not easily explained by other causes, disorders of the synthesis or function of deiodinases should be considered. Treatment with selenium and levothyroxine could help in the management of this pathology.

https://doi.org/10.53853/encr.8.2.603
PDF (Español (España))
xhtml (Español (España))

References

Pirahanchi Y, Tariq MA, Jialal I. Physiology, Thyroid. 2020;1-7. En: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. https://www.ncbi.nlm.nih.gov/books/NBK519566/

Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet. 2017;390(10101):1550-62. https://doi.org/10.1016/S0140-6736(17)30703-1

Persani L, Cangiano B, Bonomi M. The diagnosis and management of central hypothyroidism in 2018. Endocr Connect. 2020;8(2):R44-54. https://doi.org/10.1530/EC-18-0515

Gomes-Lima C, Wartofsky L, Burman K. Can Reverse T3 Assay Be Employed to Guide T4 vs. T4/T3 Therapy in Hypothyroidism? Front Endocrinol. 2019;10(diciembre):1-5. https://doi.org/10.3389/fendo.2019.00856

Park E, Jung J, Araki O, Tsunekawa K, Park SY, Kim J, et al. Concurrent TSHR mutations and DIO2 T92A polymorphism result in abnormal thyroid hormone metabolism. Sci Rep. 2018;8(1):1-19. https://doi.org/10.1038/s41598-018-28480-0

Hadlow NC, Rothacker KM, Wardrop R, Brown SJ, Lim EM, Walsh JP. The relationship between TSH and free T4in a large population is complex and nonlinear and differs by age and sex. J Clin Endocrinol Metab. 2013;98(7):2936-43. https://doi.org/10.1210/jc.2012-4223

Winther KH, Watt T, Bjørner JB, Cramon P, Feldt-Rasmussen U, Gluud C, et al. The chronic autoimmune thyroiditis quality of life selenium trial (CATALYST): Study protocol for a randomized controlled trial. Trials. 2014;15(1):1-20. https://doi.org/10.1186/1745-6215-15-115

Bernardi LA, Cohen RN, Stephenson MD. Impact of subclinical hypothyroidism in women with recurrent early pregnancy loss. Fertil Steril [Internet]. 2013;100(5):1326-31.e1. https://doi.org/10.1016/j.fertnstert.2013.07.1975

Almandoz J, Gharib H. Hypothyroidism: Etiology, Diagnosis, and Management. Med Clin N Am. 2012;96(2):203-21. https://doi.org/10.1016/j.mcna.2012.01.005

Zhang Y, Roh YJ, Han S, Park I, Lee HM, Ok YS, et al. Role of selenoproteins in redox regulation of signaling and the antioxidant system: a review. Antioxidants (Basel). 2020 my.;9(5):383. https://doi.org/10.3390/antiox9050383

Bernal J. Síndromes de resistencia a las hormonas tiroideas. Endocrinol y Nutr. 2011;58(4):185-96. https://doi.org/10.1016/j.endonu.2011.02.001

Bianco A, da Conceição R. The deiodinase trio and thyroid hormone signaling. Method Mol Biol. 2018;67-83. https://doi.org/10.1007/978-1-4939-7902-8_8

Fekete C, Mihály E, Herscovici S, Salas J, Tu H, Larsen PR, et al. DARPP-32 and CREB are present in type 2 iodothyronine deiodinase-producing tanycytes: implications for the regulation of type 2 deiodinase activity. Brain Res. 2000;862(1-2):154-61. https://doi.org/10.1016/S0006-8993(00)02105-3

Huang SA. Physiology and pathophysiology of type 3 deiodinase in humans. Thyroid. 2005;15(8):875-81. https://doi.org/10.1089/thy.2005.15.875

Dumitrescu AM, Liao XH, Abdullah MSY, Lado-Abeal J, Majed FA, Moeller LC, et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet. 2005;37(11):1247-52. https://doi.org/10.1038/ng1654

McAninch EA, Bianco AC. New insights into the variable effectiveness of levothyroxine monotherapy for hypothyroidism. Lancet Diabetes Endocrinol. 2015;3(10):756-8. https://doi.org/10.1016/S2213-8587(15)00325-3

Gereben B, McAninch EA, Ribeiro MO, Bianco AC. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol. 2015;11:642-52. https://doi.org/10.1038/nrendo.2015.155

Shin D, Kim K, An J, Lee E. Different TSH suppressive effects of liothyronine combination according to Thr92Ala type 2 deiodinase polymorphism. Endocrine Abstracts. 2015;37. https://doi.org/10.1530/endoabs.37.OC6.3

Jo S, Fonseca T, Bocco B, Fernandes G, McAninch E, Bolin A, et al. Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain. J Clin Invest. 2018;129(1):230-45. https://doi.org/10.1172/JCI123176

Fischman A, Domínguez J. Combined therapy with levothyroxine and liothyronine for hypothyroidism. Medwave. 2018;18(08):e7376-e7376. https://doi.org/10.5867/medwave.2018.08.7375

Peterson SJ, McAninch EA, Bianco AC. Is a normal TSH synonymous with "euthyroidism" in levothyroxine monotherapy? J Clin Endocrinol Metab. 2016 dic. 1;101(12):4964-73. https://doi.org/10.1210/jc.2016-2660

Jo S, Fonseca TL, Bocco BMLC, Fernandes GW, McAninch EA, Bolin AP, et al. Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain. J Clin Invest. 2019 Jan 2;129(1). https://doi.org/10.1172/JCI123176

Sánchez A. Selenio y tiroides. Rev tiroides. 2009;18:40-45.

Valea A, Georgescu CE. Selenoproteins in human body: focus on thyroid pathophysiology. Hormones. 2018;17:183-96. https://doi.org/10.1007/s42000-018-0033-5

Ventura M, Melo M, Carrilho F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int J Endocrinol. 2017;2017:1-9. https://doi.org/10.1155/2017/1297658

Winther K, Rayman M, Bonnema S, Hegedüs L. Selenium in thyroid disorders - essential knowledge for clinicians. Nature Rev Endocrinol. 2020;16(3):165-76. https://doi.org/10.1038/s41574-019-0311-6

Vrca VB, Skreb F, Cepelak I, Romic Z, Mayer L. Supplementation with antioxidants in the treatment of Graves' disease; the effect on glutathione peroxidase activity and concentration of selenium. Clin Chim Acta. 2004;341(1-2):55-63. https://doi.org/10.1016/j.cccn.2003.10.028

Marcocci C, Kahaly GJ, Krassas GE, Bartalena L, Prummel M, Stahl M, et al. Selenium and the course of mild Graves' orbitopathy. N Engl J Med. 2011;364:1920-31. https://doi.org/10.1056/NEJMoa1012985

Gartner R, Gasnier BC, Dietrich JW, Krebs B, Angstwurm MW. Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metab. 2002;87:1687-91. https://doi.org/10.1210/jcem.87.4.8421

Eskes SA, Endert E, Fliers E, Birnie E, Hollenbach B, Schomburg L, et al. Selenite supplementation in euthyroid subjects with thyroid peroxidase antibodies. Clin Endocrinol (Oxf). 2014;80:444-51. https://doi.org/10.1111/cen.12284

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Revista Endocrino

Dimensions


PlumX


Downloads

Download data is not yet available.