Resumen
Introducción: el hipotiroidismo es una endocrinopatía caracterizada por la acción o la producción deficiente de las hormonas tiroideas en el organismo. Una de las etiologías menos frecuentes es la disfunción en las desyodasas, la cual puede sospecharse cuando el perfil tiroideo evidencia hormona tiroestimulante (TSH) elevada, tiroxina (T4) libre alta con triyodotironina (T3) total o libre baja.
Objetivo: dar a conocer un caso de hipotiroidismo tratado exitosamente con selenio y levotiroxina, así como describir el papel del selenio en la enfermedad tiroidea.
Presentación del caso: hombre de 22 años con alteraciones en el perfil tiroideo caracterizado por TSH y T4 libre altas y T3 en el límite inferior, sin hallazgo de adenomas de hipófisis, mutaciones en el gen receptor de hormona tiroidea (THRB)
o alteraciones en las globulinas transportadoras de tiroxina, que se trató exitosamente con suplencia de hormona tiroidea y selenio.
Discusión y conclusión: frente a concentraciones anómalas en los niveles de TSH, T4 y T3, no fácilmente explicables por otras causas, las alteraciones en la síntesis o función de las desyodasas deben considerarse. El tratamiento con selenio y levotiroxina podría ayudar en el manejo de esta patología.
Citas
Pirahanchi Y, Tariq MA, Jialal I. Physiology, Thyroid. 2020;1-7. En: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. https://www.ncbi.nlm.nih.gov/books/NBK519566/
Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet. 2017;390(10101):1550-62. https://doi.org/10.1016/S0140-6736(17)30703-1
Persani L, Cangiano B, Bonomi M. The diagnosis and management of central hypothyroidism in 2018. Endocr Connect. 2020;8(2):R44-54. https://doi.org/10.1530/EC-18-0515
Gomes-Lima C, Wartofsky L, Burman K. Can Reverse T3 Assay Be Employed to Guide T4 vs. T4/T3 Therapy in Hypothyroidism? Front Endocrinol. 2019;10(diciembre):1-5. https://doi.org/10.3389/fendo.2019.00856
Park E, Jung J, Araki O, Tsunekawa K, Park SY, Kim J, et al. Concurrent TSHR mutations and DIO2 T92A polymorphism result in abnormal thyroid hormone metabolism. Sci Rep. 2018;8(1):1-19. https://doi.org/10.1038/s41598-018-28480-0
Hadlow NC, Rothacker KM, Wardrop R, Brown SJ, Lim EM, Walsh JP. The relationship between TSH and free T4in a large population is complex and nonlinear and differs by age and sex. J Clin Endocrinol Metab. 2013;98(7):2936-43. https://doi.org/10.1210/jc.2012-4223
Winther KH, Watt T, Bjørner JB, Cramon P, Feldt-Rasmussen U, Gluud C, et al. The chronic autoimmune thyroiditis quality of life selenium trial (CATALYST): Study protocol for a randomized controlled trial. Trials. 2014;15(1):1-20. https://doi.org/10.1186/1745-6215-15-115
Bernardi LA, Cohen RN, Stephenson MD. Impact of subclinical hypothyroidism in women with recurrent early pregnancy loss. Fertil Steril [Internet]. 2013;100(5):1326-31.e1. https://doi.org/10.1016/j.fertnstert.2013.07.1975
Almandoz J, Gharib H. Hypothyroidism: Etiology, Diagnosis, and Management. Med Clin N Am. 2012;96(2):203-21. https://doi.org/10.1016/j.mcna.2012.01.005
Zhang Y, Roh YJ, Han S, Park I, Lee HM, Ok YS, et al. Role of selenoproteins in redox regulation of signaling and the antioxidant system: a review. Antioxidants (Basel). 2020 my.;9(5):383. https://doi.org/10.3390/antiox9050383
Bernal J. Síndromes de resistencia a las hormonas tiroideas. Endocrinol y Nutr. 2011;58(4):185-96. https://doi.org/10.1016/j.endonu.2011.02.001
Bianco A, da Conceição R. The deiodinase trio and thyroid hormone signaling. Method Mol Biol. 2018;67-83. https://doi.org/10.1007/978-1-4939-7902-8_8
Fekete C, Mihály E, Herscovici S, Salas J, Tu H, Larsen PR, et al. DARPP-32 and CREB are present in type 2 iodothyronine deiodinase-producing tanycytes: implications for the regulation of type 2 deiodinase activity. Brain Res. 2000;862(1-2):154-61. https://doi.org/10.1016/S0006-8993(00)02105-3
Huang SA. Physiology and pathophysiology of type 3 deiodinase in humans. Thyroid. 2005;15(8):875-81. https://doi.org/10.1089/thy.2005.15.875
Dumitrescu AM, Liao XH, Abdullah MSY, Lado-Abeal J, Majed FA, Moeller LC, et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet. 2005;37(11):1247-52. https://doi.org/10.1038/ng1654
McAninch EA, Bianco AC. New insights into the variable effectiveness of levothyroxine monotherapy for hypothyroidism. Lancet Diabetes Endocrinol. 2015;3(10):756-8. https://doi.org/10.1016/S2213-8587(15)00325-3
Gereben B, McAninch EA, Ribeiro MO, Bianco AC. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol. 2015;11:642-52. https://doi.org/10.1038/nrendo.2015.155
Shin D, Kim K, An J, Lee E. Different TSH suppressive effects of liothyronine combination according to Thr92Ala type 2 deiodinase polymorphism. Endocrine Abstracts. 2015;37. https://doi.org/10.1530/endoabs.37.OC6.3
Jo S, Fonseca T, Bocco B, Fernandes G, McAninch E, Bolin A, et al. Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain. J Clin Invest. 2018;129(1):230-45. https://doi.org/10.1172/JCI123176
Fischman A, Domínguez J. Combined therapy with levothyroxine and liothyronine for hypothyroidism. Medwave. 2018;18(08):e7376-e7376. https://doi.org/10.5867/medwave.2018.08.7375
Peterson SJ, McAninch EA, Bianco AC. Is a normal TSH synonymous with "euthyroidism" in levothyroxine monotherapy? J Clin Endocrinol Metab. 2016 dic. 1;101(12):4964-73. https://doi.org/10.1210/jc.2016-2660
Jo S, Fonseca TL, Bocco BMLC, Fernandes GW, McAninch EA, Bolin AP, et al. Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain. J Clin Invest. 2019 Jan 2;129(1). https://doi.org/10.1172/JCI123176
Sánchez A. Selenio y tiroides. Rev tiroides. 2009;18:40-45.
Valea A, Georgescu CE. Selenoproteins in human body: focus on thyroid pathophysiology. Hormones. 2018;17:183-96. https://doi.org/10.1007/s42000-018-0033-5
Ventura M, Melo M, Carrilho F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int J Endocrinol. 2017;2017:1-9. https://doi.org/10.1155/2017/1297658
Winther K, Rayman M, Bonnema S, Hegedüs L. Selenium in thyroid disorders - essential knowledge for clinicians. Nature Rev Endocrinol. 2020;16(3):165-76. https://doi.org/10.1038/s41574-019-0311-6
Vrca VB, Skreb F, Cepelak I, Romic Z, Mayer L. Supplementation with antioxidants in the treatment of Graves' disease; the effect on glutathione peroxidase activity and concentration of selenium. Clin Chim Acta. 2004;341(1-2):55-63. https://doi.org/10.1016/j.cccn.2003.10.028
Marcocci C, Kahaly GJ, Krassas GE, Bartalena L, Prummel M, Stahl M, et al. Selenium and the course of mild Graves' orbitopathy. N Engl J Med. 2011;364:1920-31. https://doi.org/10.1056/NEJMoa1012985
Gartner R, Gasnier BC, Dietrich JW, Krebs B, Angstwurm MW. Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metab. 2002;87:1687-91. https://doi.org/10.1210/jcem.87.4.8421
Eskes SA, Endert E, Fliers E, Birnie E, Hollenbach B, Schomburg L, et al. Selenite supplementation in euthyroid subjects with thyroid peroxidase antibodies. Clin Endocrinol (Oxf). 2014;80:444-51. https://doi.org/10.1111/cen.12284
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2021 Revista Colombiana de Endocrinología, Diabetes & Metabolismo