Technology in Endocrinology: Stages, Concepts and Implementation
PDF (Español (España))


mathematical models
continuous glucose monitoring
artificial intelligence
digital ecosystem

How to Cite

Ramírez-Rincón, A., Tovar-Cortés, H., Builes-Montaño, C. E., Gómez Medina, A. M., Marín Sánchez, A. ., Henao Carrillo, D. C. ., Matallana Rhoades, A. M. ., Botero-Arango, J. F., Cure Cure, C. A. ., Guzmán Gómez, G. E., Fériz Bonelo, K., & Vallejo González, S. (2021). Technology in Endocrinology: Stages, Concepts and Implementation. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 8(1), 1–120.


Purpose. As one of the defining edges of technology, applied science has had an approach to medicine since its dawn, having a significant influence on Endocrinology. The present text aims to denote concepts of approximation, in order to describe the practical implementation of the tandem between technology and Endocrinology.

Overview. We begin with some specific historical elements regarding the encounter between technology and Endocrinology. Subsequently, we introduce a concept of vibrant validity: time in range as a metric of glycemic control today. We highlight the leading role of continuous glucose monitoring in diabetes, and we explore its potential uses. In the fourth chapter, we make a stop to understand the immediacy between mathematics and Endocrinology. In the last two chapters, we immerse ourselves into the world of digital ecosystems, through the path of artificial intelligence and functional resources such as apps.

Contribution. The exciting world of technology seduces us more and more in different areas; its relationship with Endocrinology is and will be in time of an irrefutable forcefulness. In this way, we extend an invitation to experience the coming processes of said conceptual fusion.
PDF (Español (España))


Hughes TP. History of technology. En: International Encyclopedia of the Social & Behavioral Sciences. Elsevier; 2001;6852–7.

Real Academia Española: Diccionario de la lengua española, 23.ª ed., [versión 23.4 en línea]. <> [citado el 22 jul 2021].

Díaz-Caballero JR. Notas sobre el origen del hombre y la ciencia. En: Grupo de Estudios Sociales de la Tecnología. Tecnología y Sociedad. 1999:3–10.

Reflexión Editorial de Zarate-Triviño.

Scharff RC, Dusek V. Philosophy of Technology: The Technological Condition: An Anthology. 2a ed. Hoboken, NJ, Estados Unidos de América: Wiley-Blackwell; 2014. 736 p.

Bunge M. Epistemología: Curso de actualización. 3a ed. Siglo XXI Ediciones; 2002.

The Croonian lectures on the chemical correlation of the functions of the body: delivered before the Royal College of Physicians of London on June 20th, 22nd, 27th & 29th, 1905 / by Ernest Henry Starling [Internet]. [citado 12 jul 2021]. Disponible en:

Brush SG, Nettie M. Stevens and the discovery of sex determination by chromosomes. Isis. 1978;69(2):163–-72.

Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39(7):1157–75.

Cusano NE, Silverberg SJ, Bilezikian JP. Normocalcemic primary hyperparathyroidism. J Clin Densitom. 2013;16(1):33–9.

Wermers RA, Khosla S, Atkinson EJ, Achenbach SJ, Oberg AL, Grant CS, et al. Incidence of primary hyperparathyroidism in Rochester, Minnesota, 1993-2001: an update on the changing epidemiology of the disease. J Bone Miner Res. 2006;21(1):171–7.

Means JH. Historical background of the use of radioactive Iodine in medicine. N Engl J Med. 1955;252(22):936–40.

Joliot F, Curie I. Artificial production of a new kind of radio-element. Nature. 1934;133(3354):201–2.

Fermi E. Radioactivity induced by neutron bombardment. Nature. 1934;133(3368):757.

Hertz S, Roberts A, Evans RD. Radioactive iodine as an indicator in the study of thyroid physiology. Exp Biol Med (Maywood). 1938;38(4):510–3.

Hertz S, Roberts A. Radioactive iodine in the study of thyroid physiology; the use of radioactive iodine therapy in hyperthyroidism. J Am Med Assoc. 1946;131:81–6.

Chapman EM, Evans RD. The treatment of hyperthyroidism with radioactive iodine. J Am Med Assoc. 1946;131(2):86–91.

Keston AS, Ball RP, Frantz VK, Palmer WW. Storage of radioactive iodine in a metastasis from thyroid carcinoma. Science. 1942;95(2466):362–3.

Heintzman ND. A digital ecosystem of diabetes data and technology: Services, systems, and tools enabled by wearables, sensors, and apps. J Diabetes Sci Technol. 2015;10(1):35–41.

Tauschmann M, Hovorka R. Technology in the management of type 1 diabetes mellitus - current status and future prospects. Nat Rev Endocrinol. 2018;14(8):464–75.

Paton JS, Wilson M, Ireland JT, Reith SB. Convenient pocket insulin syringe. Lancet (Londres, Inglaterra) 1981;1(8213):189–190.

Renard E. Insulin pump use in Europe. Diabetes Technol Ther. 2010;12 Suppl 1(S1): S29–32.

Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW.10-Year Follow-up of Intensive Glucose Control in Type 2 Diabetes. N Engl J Med. 2008;359(15):1577–89.

Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes: The DCCT/EDIC study 30-year follow-up. Diabetes Care. 2016;39(5):686–93.

Bailey T, Bode BW, Christiansen MP, Klaff LJ, Alva S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol Ther. 2015;17(11): 787–94.

Bergenstal RM. Continuous glucose monitoring: transforming diabetes management step by step. Lancet. 2018;391(10128):1334–36.

Bergenstal RM, Klonoff DC, Garg SK, Bode BW, Meredith M, Slover RH, et al. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl J Med. 2013;369(3):224–32.

Battelino T, Nimri R, Dovc K, Phillip M, Bratina N. Prevention of hypoglycemia with predictive low glucose insulin suspension in children with type 1 diabetes: a randomized controlled trial. Diabetes Care. 2017;40(6):764–70.

Garg SK, Weinzimer SA, Tamborlane WV, Buckingham BA, Bode BW, Bailey Ts, et al. Glucose Outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther. 2017;19(3):155–63.

Duke DC, Barry S, Wagner DV, Speight J, Choudhary P, Harris MA. Distal technologies and type 1 diabetes management. Lancet Diabetes Endocrinol. 2018;6(2):143–56.

Bolinder J, Antuna R, Geelhoed-Duijvestijn P, Kröger J, Weitgasser R. Novel glucose-sensing technology and hypoglycemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial. [Nueva tecnología de sensores de glucosa e hipoglucemia en diabetes tipo 1: un ensayo multicéntrico, controlado y aleatorizado, no enmascarado]. Lancet. 2016;388(10057):2254–63.

Haak T, Hanaire H, Ajjan R, Hermanns N, Riveline J-P, Rayman G. Use of flash glucose-sensing technology for 12 months as a replacement for blood glucose monitoring in insulin-treated type 2 diabetes. [Tecnología Flash de sensores de glucosa en sustitución de la monitorización de glucemia para el manejo de la diabetes tipo 2 en tratamiento con insulina: ensayo controlado, aleatorizado, abierto y multicéntrico]. Diabetes Ther. 2017;8(3):573–86.

Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biestel T, et al. Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the international consensus on time in range. Diabetes Care. 2019;42(8):1593–1603.

Trawley S, Browne JL, Hagger VL, Hendrieckx C, Holmes-Truscott E, Pouwer F, et al. The use of mobile applications among adolescents with type 1 diabetes: Results from Diabetes MILES Youth-Australia. Diabetes Technol Ther. 2016;18(12),813–9.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.




Download data is not yet available.