Resumen
Contexto: La enfermedad por coronavirus (COVID-19) presenta un amplio espectro sintomático que varía de persona a persona. Sin embargo, hay evidencia que denota una dependencia del sexo en la severidad de los síntomas.
Objetivo: Describir los criterios y planteamientos que sugieren a las diferencias de sexo como factores responsables de la mortalidad y severidad de los síntomas de la enfermedad por SARS-CoV-2.
Metodología: Se realizó una búsqueda descriptiva de la literatura en la base de datos PubMed, tomando artículos publicados desde diciembre de 2019 hasta mayo de 2021, siendo los idiomas de publicación inglés y español, englobando estudios actuales y retrospectivos sobre factores sexuales, hormonales, moleculares y genéticos en la infección y enfermedad por SARS-CoV-2.
Resultados: Se seleccionaron 30 artículos, los cuales abordaban principalmente las siguientes líneas y temas de investigación: epidemiología y salud pública, ciencias biomédicas (evolución, reproducción, genética, inmunología, endocrinología, bioquímica, biología molecular) y, medicina clínica.
Conclusiones: Estadísticamente hay menor severidad y mortalidad por la infección en población femenina a nivel global. Esta tendencia responde a mecanismos que incluyen: una mayor reserva de enzima convertidora de angiotensina II (ECA2) en algunos tejidos, una respuesta inmune más eficaz debido a la presencia de hormonas sexuales que actúan como factores protectores a la enfermedad, así como mecanismos propios de los genes sexuales, ya sea la inactivación del X o genes asociados al sistema inmune.
Citas
Llanes A, Restrepo CM, Caballero Z, Rajeev S, Kennedy MA, Lleonart R. Betacoronavirus Genomes?: How Genomic Information Has Been Used to Deal with Past Outbreaks and the COVID-19 Pandemic. 2020;2:1–30.
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet [Internet]. 2020;395(10224):565–74. Available from: http://dx.doi.org/10.1016/S0140-6736(20)30251-8
Statista. COVID-19: número de muertes por país en 2021| Publicado por Abigail Orús, 04 feb. 2022. La estadística muestra el número de muertes a nivel mundial causadas por el SARS-CoV-2, conocido popularmente como el coronavirus de Wuhan, a fecha del 04 de febrero de 2022 [Internet]. [cited 2022 Feb 05]. Available from: https://es.statista.com/estadisticas/1095779/numero-de-muertes-causadas-por-el-coronavirus-de-wuhan-por-pais/#statisticContainer
INS. COVID-19 en Colombia [Internet]. [cited 2021 Jan 13]. Available from: https://www.ins.gov.co/Noticias/paginas/coronavirus.aspx
Basso N. Capítulo 24 SISTEMA RENINA-ANGIOTENSINA-ALDOSTERONA. Saha [Internet]. 2014;(24):114–6. Available from: http://www.saha.org.ar/1/pdf/libro-hipertension/Cap.024.pdf
Oliva Marín JE. SARS-CoV-2: origen, estructura, replicación y patogénesis. Alerta, Rev científica del Inst Nac Salud. 2020;3(2):79–86.
Foresta C, Rocca MS, Di Nisio A. Gender susceptibility to COVID-19: a review of the putative role of sex hormones and X chromosome. J Endocrinol Invest [Internet]. 2020;44(5):951–6. Available from: https://doi.org/10.1007/s40618-020-01383-6 Figure 1, Proposed mechanisms of sex-related susceptibility to COVID-19
Aksoy H, Karadag AS, Wollina U. Angiotensin II receptors: Impact for COVID-19 severity. Dermatol Ther. 2020;33(6).
Giagulli VA, Guastamacchia E, Magrone T, Jirillo E, Lisco G, De Pergola G, et al. Worse progression of COVID-19 in men: Is testosterone a key factor? Andrology. 2020;9(1):53–64.
Gemmati D, Bramanti B, Serino ML, Secchiero P, Zauli G, Tisato V. COVID-19 and individual genetic susceptibility/receptivity: Role of ACE1/ACE2 genes, immunity, inflammation and coagulation. might the double x-chromosome in females be protective against SARS-COV-2 compared to the single x-chromosome in males? Int J Mol Sci. 2020;21(10):1–23.
Viveiros A, Rasmuson J, Vu J, Mulvagh SL, Yip CYY, Norris CM, et al. Sex differences in COVID-19: Candidate pathways, genetics of ACE2, and sex hormones. Am J Physiol - Hear Circ Physiol. 2020;320(1):H296–304.
Darbani B. The expression and polymorphism of entry machinery for covid-19 in human: Juxtaposing population groups, gender, and different tissues. Int J Environ Res Public Health. 2020;17(10).
Moradi F, Enjezab B, Ghadiri-Anari A. The role of androgens in COVID-19. Diabetes Metab Syndr Clin Res Rev. 2020;14(6):2003–6.
Ferretti L, Gagnat A. Déficit androgénico ligado a la edad. EMC - Urol [Internet]. 2020;52(2):1–5. Available from: https://doi.org/10.1016/S1761-3310(20)43728-4
López-Reyes A, Martinez-Armenta C, Espinosa-Velázquez R, Vázquez-Cárdenas P, Cruz-Ramos M, Palacios-Gonzalez B, et al. NLRP3 Inflammasome: The Stormy Link Between Obesity and COVID-19. Front Immunol. 2020;11(October):1–9.
Lee S, Channappanavar R, Kanneganti T. Coronaviruses?: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. 2020;(January).
van den Berg DF, te Velde AA. Severe COVID-19: NLRP3 Inflammasome Dysregulated. Front Immunol. 2020;11(June):1–6.
Vardhana SA, Wolchok JD. The many faces of the anti-COVID immune response. J Exp Med. 2020;217(6):1–10.
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol [Internet]. 2020;92(4):424–32. Available from: http://dx.doi.org/10.1002/jmv.25685
Pinheiro I, Dejager L, Libert C. X-chromosome-located microRNAs in immunity: Might they explain male/female differences?: The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. BioEssays. 2011;33(11):791–802.
Van Der Made CI, Simons A, Schuurs-Hoeijmakers J, Van Den Heuvel G, Mantere T, Kersten S, et al. Presence of Genetic Variants among Young Men with Severe COVID-19. JAMA - J Am Med Assoc. 2020;324(7):663–73.
Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N, Francisci D, et al. Association of toll-like receptor 7 variants with life-threatening COVID-19 disease in males: Findings from a nested case-control study. Elife. 2021;10:1–15.
Smit JJ, Lindell DM, Boon L, Kool M, Lambrecht BN, Lukacs NW. The balance between plasmacytoid DC versus conventional DC determines pulmonary immunity to virus infections. PLoS One. 2008;3(3).
Campana P, Parisi V, Leosco D, Bencivenga D, Della Ragione F, Borriello A. Dendritic Cells and SARS-CoV-2 Infection: Still an Unclarified Connection. Cells. 2020;9(9).
Han J, Sun J, Zhang G, Chen H. Dcs-based therapies: Potential strategies in severe sars-cov-2 infection. Int J Med Sci. 2021;18(2):406–18.
Diebold SS, Kaisho T, Hemmi H, Akira S, Reis E Sousa C. Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. Science (80- ). 2004;303(5663):1529–31.
Zhou R, Kai-Wang To K, Wong Y-C, Liu L, Zhou B, Li X, et al. Acute SARS-CoV-2 Infection Impairs Dendritic Cell and T Cell Responses. 2020;
McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87–103.
Laffont S, Rouquié N, Azar P, Seillet C, Plumas J, Aspord C, et al. X-Chromosome Complement and Estrogen Receptor Signaling Independently Contribute to the Enhanced TLR7-Mediated IFN-? Production of Plasmacytoid Dendritic Cells from Women. J Immunol. 2014;193(11):5444–52.
Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. 2020;724(August):718–24.
Feng E, Balint E, Poznanski SM, Ashkar AA, Loeb M. Aging and Interferons: Impacts on Inflammation and Viral Disease Outcomes. 2021;
Lopez L, Sang PC, Tian Y, Sang Y. Dysregulated interferon response underlying severe covid-19. Viruses. 2020;12(12).
Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science (80- ). 2020;370(6515).
Masselli E, Vaccarezza M, Carubbi C, Pozzi G. NK cells: A double edge sword against SARS-CoV-2. 2020;(January).
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol [Internet]. 2020;17(5):533–5. Available from: http://dx.doi.org/10.1038/s41423-020-0402-2
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-?: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75(2):163–89.
van Eeden C, Khan L, Osman MS, Tervaert JWC. Natural killer cell dysfunction and its role in covid-19. Int J Mol Sci. 2020;21(17):1–17.
Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature. 2020;588(7837):315–20.
Kosyreva A, Dzhalilova D, Lokhonina A, Vishnyakova P, Fatkhudinov T. The Role of Macrophages in the Pathogenesis of SARS-CoV-2-Associated Acute Respiratory Distress Syndrome. Front Immunol. 2021;12(May):1–16.
Andrológica. Estrógenos en el hombre [Internet]. 2021 [cited 2022 Jan 13]. Available from: https://andrologica.es/2/estrogenos-en-el-hombre/
Salem ML. Estrogen, a double-edged sword: Modulation of TH1- and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production. Curr Drug Targets Inflamm Allergy. 2004;3(1):97–104.
Gargaglioni LH, Marques DA. Reply to Jakovac: Sex differences in COVID-19 course and outcome: progesterone should not be neglected. J Appl Physiol. 2020;129(5):107–8.
RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021;384(8):693–704.
Pradhan A, Olsson PE. Sex differences in severity and mortality from COVID-19: are males more vulnerable? Biol Sex Differ. 2020;11(1):1–11.
Moulton VR. Sex hormones in acquired immunity and autoimmune disease. Front Immunol. 2018;9(OCT):1–21.
Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 2015;294(2):36–69.
Breithaupt-Faloppa AC, Correia C de J, Prado CM, Stilhano RS, Ureshino RP, Moreira LFP. 17b-estradiol, a potential ally to alleviate SARS-CoV2 infection. Clinics. 2020;75(24):1–8.
Faas M, Bouman A, Moesa H, Heineman MJ, De Leij L, Schuiling G. The immune response during the luteal phase of the ovarian cycle: A Th2-type response? Fertil Steril. 2000;74(5):1008–13.
Barañao RI. Hormonas sexuales y respuesta inmunológica. Saegre. 2009;16(2):20–30.
Mauvais-Jarvis F, Klein SL, Levin ER. Estradiol, Progesterone, Immunomodulation, and COVID-19 Outcomes. Endocrinol (United States). 2020;161(9):1–8.
Chanana N, Palmo T, Sharma K, Kumar R, Graham BB, Pasha Q. Sex-derived attributes contributing to SARS-CoV-2 mortality. Am J Physiol - Endocrinol Metab. 2020;319(3):E562–7.
Liu J, Ji H, Zheng W, Wu X, Zhu JJ, Arnold AP, et al. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17?-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ [Internet]. 2010;1(1):6. Available from: http://www.bsd-journal.com/content/1/1/6
Seeland U, Coluzzi F, Simmaco M, Mura C, Bourne PE, Heiland M, et al. Evidence for treatment with estradiol for women with SARS-CoV-2 infection. BMC Med. 2020;18(1):1–9.
Pinna G. Sex and COVID-19: A Protective Role for Reproductive Steroids. CellPress. 2020;(January).
Jakovac H. Sex differences in COVID-19 course and outcome: Progesterone should not be neglected. J Appl Physiol. 2020;129(5):107–8.
Hierweger AM, Engler JB, Friese MA, Reichardt HM, Lydon J, DeMayo F, et al. Progesterone modulates the T-cell response via glucocorticoid receptor-dependent pathways. Am J Reprod Immunol. 2019;81(2).
Kloc M, Ghobrial RM, Kubiak JZ. The Role of Genetic Sex and Mitochondria in Response to COVID-19 Infection. Int Arch Allergy Immunol. 2020;181(8):629–34.
Maan AA, Eales J, Akbarov A, Rowland J, Xu X, Jobling MA, et al. The y chromosome: A blueprint for men’s health? Eur J Hum Genet. 2017;25(11):1181–8.
El-Bacha T, Da Poian AT. Virus-induced changes in mitochondrial bioenergetics as potential targets for therapy. Int J Biochem Cell Biol [Internet]. 2013;45(1):41–6. Available from: http://dx.doi.org/10.1016/j.biocel.2012.09.021
Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity [Internet]. 2015;42(3):406–17. Available from: http://dx.doi.org/10.1016/j.immuni.2015.02.002
Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, et al. Diverse roles of mitochondria in immune responses: Novel insights into immuno-metabolism. Front Immunol. 2018;9(JUL).
Hee JS, Cresswell P. Viperin interaction with mitochondrial antiviral signaling protein (MAVS) limits viperin-mediated inhibition of the interferon response in macrophages. PLoS One. 2017;12(2):1–18.
Wang C, Xie J, Zhao L, Fei X, Zhang H, Tan Y, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine [Internet]. 2020;57:102833. Available from: https://doi.org/10.1016/j.ebiom.2020.102833
Silkaitis K, Lemos B. Sex-biased chromatin and regulatory cross-talk between sex chromosomes, autosomes, and mitochondria. Biol Sex Differ. 2014;5(1):1–14.
Lieber T, Jeedigunta SP, Palozzi JM, Lehmann R, Hurd TR. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature [Internet]. 2019;570(7761):380–4. Available from: http://dx.doi.org/10.1038/s41586-019-1213-4
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2022 Revista Colombiana de Endocrinología, Diabetes & Metabolismo